616 References
Dynamical Systems
[23] M. Barnsley, Fractals Everywhere, 2nd edition, Academic Press, Boston, 1993.
[24] R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Redwood City,
Calif., 1989.
[25] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley &
Sons, New York, 1990.
[26] R. A. Holmgren, A First Course in Discrete Dynamical Systems, Springer-Verlag, New York,
1996.
[27] C. Robinson, Dynamical Systems, 2nd edition, CRC Press, Boca Raton, Fla., 1999.
Differential Equations
[28] G. Birkhoff and G. C. Rota, Ordinary Differential Equations, 4th edition, John Wiley & Sons,
New York, 1989.
[29] G. F. Simmons, Differential Equations, 2nd edition, McGraw-Hill, New York, 1991.
[30] W. Walter, Ordinary Differential Equations, Grad. Texts in Math., Vol. 182, Springer-Verlag,
New York, 1998.
Fourier Series
[31] H. Dym and H. P. McKean, Fourier Series and Integrals, Academic Press, New York, 1972.
[32] T. K
¨
orner, Fourier Analysis, Cambridge University Press, Cambridge, U.K., 1988.
[33] R.T. Seeley, An Introduction to Fourier Series and Integrals, W. A. Benjamin, New York, 1966.
Wavelets
[34] G. Bachman, E. Beckenstein, and L. Narici, Fourier and Wavelet Analysis, Springer-Verlag,
New York, 2000.
[35] E. Hern
´
andez and G. Weiss, A First Course on Wavelets, CRC Press, Boca Raton, Fla., 1996.
[36] P. Wojtaszczyk, A Mathematical Introduction to Wavelets, LMS Student Texts, Vol. 37, Cam-
bridge University Press, Cambridge, U.K., 1997.
Convex Optimization
[37] J. Borwein and A. Lewis, Convex Analysis and Nonlinear Optimization, Springer-Verlag, New
York, 2000.
[38] J. B. Hiriart-Urruty and C. Lemarichal, Convex Analysis and Minimization algorithms I,
Springer-Verlag, New York, 1993.
[39] A. L. Peressini, F. E. Sullivan, and J. J. Uhl, The Mathematics of Nonlinear Programming,
Springer-Verlag, New York, 1988.
[40] J. van Tiel, Convex Analysis, John Wiley & Sons, New York, 1984.
[41] R. Webster, Convexity, Oxford University Press, New York, 1994.
Articles
[42] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, “On Devaney’s Definition of Chaos,”
Amer. Math. Monthly 99 (1992), 332–334.
[43] H. Carslaw, “A Historical Note on Gibbs’ Phenomenon in Fourier’s Series and Integrals,” Bull.
Amer. Math. Soc. (2) 31 (1925), 420–424.
[44] J. Foster and F. B. Richards, “The Gibbs Phenomenon for Piecewise-Linear Approximation,”
Amer. Math. Monthly 98 (1991), 47–49.
[45] J. E. Hutchinson, “Fractals and Self-Similarity,” Indiana Univ. Math. J. 30 (1981), 713–747.
[46] T. Li, J. Yorke, “Period Three Implies Chaos,” Amer. Math. Monthly 82 (1975), 985–992.
[47] M. Vellekoop and R. Berglund, “On Intervals, Transitivity = Chaos,” Amer. Math. Monthly 101
(1994), 353–355.
[48] R. Weinstock, “Elementary Evaluations of
R
∞
0
e
−x
2
dx,
R
∞
0
cos
2
(x
2
) dx and
R
∞
0
sin
2
(x
2
) dx,”
Amer. Math. Monthly 97 (1990), 39–42.