C.6 R-RTR-RTR Mechanism: Dyad Method 397
xF=xD+DF
*
cos(phi3); yF=yD+DF
*
sin(phi3);
rF=[xF yF 0];
fprintf(’rF = [ %g, %g, %g ] (m)\n’, rF)
xG=xA+AG
*
cos(phi5); yG=yA+AG
*
sin(phi5);
rG=[xG yG 0];
fprintf(’rG = [ %g, %g, %g ] (m)\n’, rG)
fprintf(’phi2 = phi3 = %g (degrees) \n’, phi2
*
180/pi)
fprintf(’phi4 = phi5 = %g (degrees) \n’, phi4
*
180/pi)
fprintf(’\n’)
xC1 = xB/2; yC1 = yB/2; rC1 = [xC1 yC1 0];
fprintf(’rC1 = [ %g, %g, %g ] (m)\n’, rC1)
rC2 = rB;
fprintf(’rC2 = rB = [ %g, %g, %g ] (m)\n’, rC2)
xC3 = (xD+xF)/2; yC3 = (yD+yF)/2; rC3 = [xC3 yC3 0];
fprintf(’rC3 = [ %g, %g, %g ] (m)\n’, rC3)
rC4 = rD;
fprintf(’rC4 = rD = [ %g, %g, %g ] (m)\n’, rC4)
xC5 = (xA+xG)/2; yC5 = (yA+yG)/2; rC5 = [xC5 yC5 0];
fprintf(’rC5 = [ %g, %g, %g ] (m)\n’, rC5)
% Graphic of the mechanism
plot([0,xB],[0,yB],’r-o’,[xD,xF],[yD,yF],...
[xA,xG],[yA,yG],’g-o’),...
xlabel(’x (m)’), ylabel(’y (m)’), ...
title(’positions for \phi = 30 (deg)’),...
text(xA,yA,’ A’),text(xB,yB,’ B=C2’),...
text(xC,yC,’ C’),text(xD,yD,’ D=C4’),...
text(xF,yF,’ F’),text(xG,yG,’ G’),...
text(xC1,yC1,’ C1’),text(xC3,yC3,’ C3’),...
text(xC5,yC5,’ C5’),...
axis([-0.3 0.3 -0.3 0.3]), grid on
fprintf(’\n’)
fprintf(’Velocity and acceleration analysis\n\n’)
n = 50.;
omega1=[00pi
*
n/30 ]; alpha1 = [000];
vA=[000];aA=[000];
vB1 = vA + cross(omega1,rB); vB2 = vB1;
aB1 = aA+cross(alpha1,rB)-dot(omega1,omega1)
*
rB;
aB2 = aB1;
fprintf(’aB1=aB2 = [ %g, %g, %g ] (m/sˆ2)\n’,aB1)
omega3z=sym(’omega3z’,’real’);
alpha3z=sym(’alpha3z’,’real’);
vB32=sym(’vB32’,’real’);
aB32=sym(’aB32’,’real’);