364 C Programs of Chapter 4: Dynamic Force Analysis
eqvCx = eqvC(1); eqvCy = eqvC(2);
solvC = solve(eqvCx,eqvCy);
omega2zs=eval(solvC.omega2z);
vCxs=eval(solvC.vCx); Omega2 = [0 0 omega2zs];
vCs = [vCxs 0 0];
alpha2z = sym(’alpha2z’,’real’);
aCx = sym(’aCx’,’real’);
alpha2=[00alpha2z ]; aC = [aCx00];
eqaC = aC - (aB1 + cross(alpha2,rC-rB) - ...
dot(Omega2,Omega2)
*
(rC-rB));
eqaCx = eqaC(1); eqaCy = eqaC(2);
solaC = solve(eqaCx,eqaCy);
alpha2zs=eval(solaC.alpha2z); aCxs=eval(solaC.aCx);
alpha20 = [0 0 alpha2zs]; aCs = [aCxs 0 0];
fprintf...
(’alpha2 = [ %g, %g, %g ] (rad/sˆ2)\n’, alpha20)
alpha30 = [0 0 0];
fprintf...
(’alpha3 = [ %g, %g, %g ] (rad/sˆ2)\n’, alpha30)
fprintf(’\n’)
fprintf...
(’Positions and accelerations for mass centers \n’)
fprintf(’\n’)
rC1 = (rA+rB)/2;
fprintf(’rC1 = [ %g, %g, %g ] (m)\n’, rC1)
rC2 = (rB+rC)/2;
fprintf(’rC2 = [ %g, %g, %g ] (m)\n’, rC2)
rC3 = rC;
fprintf(’rC3 = [ %g, %g, %g ] (m)\n’, rC3)
% Graphic of the mechanism
plot([0,xB],[0,yB],’r-o’,[xB,xC],[yB,yC],’b-o’)
xlabel(’x (m)’), ylabel(’y (m)’),...
title(’positions for \phi = 45 (deg)’),...
text(xA,yA,’ A’),text(xB,yB,’ B’),...
text(xC,yC,’ C=C3’),...
text(rC1(1),rC1(2),’ C1’),...
text(rC2(1),rC2(2),’ C2’),...
axis([-0.1,1.6,-0.1,1.6])
aC1 = aB1/2;
fprintf(’aC1 = [ %g, %g, %g ] (m/sˆ2)\n’, aC1)
aC2 = (aB1+aCs)/2;
fprintf(’aC2 = [ %g, %g, %g ] (m/sˆ2)\n’, aC2)