38
Chapter 2: Transference Principles in Ergodic Theory
[7] R. R. Coifman and G. Weiss, Transference methods in analysis, CBMS
Regional Conf. Series Math. 31, Amer. Math. Soc., Providence, RI, 1977
(reprinted 1986).
[8] A. de la Torre, A simple proof of the maximal ergodic theorem, Can. J.
Math. 28 (1976), 1073-1075.
[9] N. Asmar, E. Berkson, and T. A. Gillespie, Transference of the strong-
type maximal inequalities by separation-preserving representations, Amer.
J. Math. 113 (1991), 47-74.
[10]
,
Transference of the weak-type maximal inequalities by distribu-
tionally bounded representations, Quart. J. Math. Oxford (2), 43 (1992),
259-282.
[11] E. Berkson, J. Bourgain, and T. A. Gillespie, On the almost every-
where convergence of ergodic averages for power-bounded operators in LP-
subspaces, Integral Equations and Operator Theory 14 (1991), 678-715.
[12] J. Bourgain, On the maximal ergodic theorem for certain subsets of the
integers, Isr. J. Math. 61 (1988), 39-72.
[13]
,
On the pointwise ergodic theorem on LP for arithmetic sets, Isr.
J. Math. 61 (1988), 73-84.
[14] ,
Pointwise ergodic theorems for arithmetic sets, IHES Publica-
tion, October 1989.
[15] R. L. Jones and J. Olsen, Subsequence pointwise ergodic theorems for
operators in LP, Isr. J. Math. 77 (1992), 33-54.
[16] R. L. Jones, J. Olsen, and M. Wierdl, Subsequence ergodic theorems for
LP contractions, Trans. Amer. Math. Soc. 331 (1992), 837-850.
[17] R. L. Jones, Ergodic averages on spheres, J. Analyse Math. 61 (1993),
29-45.
[18] A. Nevo, Harmonic analysis and pointwise ergodic theorems for noncom-
muting transformations, J. Amer. Math. Soc. 7 (1994), 875-902.
[19] A. Nevo and E. M. Stein, A generalization of Birkhoff 's pointwise ergodic
theorem, Acta Math. 173 (1994), 135-154.
[20] S. Kakutani, Random ergodic theorems and Markoff processes with a
stable distribution, Proc. Second Berkeley Symp. Math. Stat. and Prob.
II, Univ. of California Press (1951), 247-261.