Cruzeiro and Malliavin 161
[4] A. Calderon, A theorem of Marcinkiewicz and Zygmund, Trans. Amer.
Math. Soc. 68 (1950), 54-61.
[5] , Uniqueness in the Cauchy problem, Amer. J. Mathematics 80
(1958), 16-36.
[6] ,
Commutators, singular integrals on Lipschitz curves, applica-
tions, ICM Helsinki. vol. 1, Helsinki (1978), 84-96.
[7] A. Calderon and A. Zygmund, On singular integrals, Acta Mathematica
88 (1952), 85-139.
[8] A. B. Cruzeiro and S. Fang, Une inegalite L2 pour les integrales stochas-
tiques anticipatives sur une variete riemannienne. C. R. Acad. Sci. Paris
321 (1995), 1245-1250.
[9] A. B. Cruzeiro and P. Malliavin, Renormalized differential geometry on
path space: Structural equation, curvature, J. Fint. Analysis 139 (1996),
119=181.
[10] , Commutators on
path spaces and parabolic, elliptic estimates,
in preparation.
[11] B. Driver, A Cameron-Martin type quasi-invariance theorem for the
Brownian motion on a compact manifold, J. Funct. Analysis 109 (1962),
272-376.
[12] S. Fang and P. Malliavin, Stochastic analysis on the path space of a
Riemannian manifold, J. Funct. Analysis 118 (1993), 249-274.
[13] B. Gaveau and P. 'I'Yauber, L'integrale stochastique comme operateur
divergence, J. Funct. Analysis 38 (192), 230-238.
[14] K. Ito, The Brownian motion and tensor fields on Riemannian manifolds,
Proc. Int. Cong. Math. Stockholm, Stockholm (1962), 536-539.
[15] P. Malliavin, Formule de la moyenne, calcul de perturbations et theoreme
d'annulation pour les formes harmoniques, J. Funct. Anal.
17 (1974),
274-291.
[16]
,
Stochastic Analysis, Springer, Berlin, 1996, 370 pages.
[17] P. Malliavin and I). Nualart, Quasi-sure analysis of stochastic flows and
Banach space valued smooth functionals, J. Funct. Analysis 112 (1993),
429-457.