Ω
∀ ω ⊂ Ω
ω → M(ω) ω
ω → E(ω) ω
ρ(x) =
dM
dω
= lim
x∈ω,|ω|→0
M(ω)
|ω|
U(x) = ρ
−1
dE/dω |ω| ω
M(ω) =
Z
ω
ρ(x)U(x)dx, E(ω) =
Z
ω
ρ(x)U(x)dx
F (ω)
F (ω
1
∪ ω
2
) = F (ω
1
) + F (ω
2
) ω
1
, ω
2
ω
1
∩ ω
2
= ∅
x = γ(ξ, t) ξ ∈ Ω
0
Γ
ξ
=
©
x ∈ R
3
: x = γ(ξ, t), t ∈ (0, T )
ª
ω
t
=
©
x ∈ R
3
: x = γ(ξ, t), ξ ∈ ω
0
ª
=
∂γ
∂t
dx/dt = (x, t)
t
t