Файлы
Заказать работу
Обратная связь
Для правообладателей
Найти
Чеботарев А.Ю. Введение в механику сплошных сред
Файлы
Академическая и специальная литература
Механика
Механика сплошных сред
Назад
Скачать
Подождите немного. Документ загружается.
F
Ω
x
∈
R
3
,
t
∈
(0
,
T
)
F
t
∈
(0
,
T
)
ξ
=
(
ξ
1
,
ξ
2
,
ξ
3
)
Ω
0
t
=
0
F
0
(
ξ
,
t
)
F
0
(
ξ
,
t
)
=
F
(
γ
(
ξ
,
t
)
,
t
)
(
ξ
,
t
)
(
x,
t
)
F
t
∂
F
0
∂
t
=
∂
F
∂
t
+
∂
F
∂
x
j
∂
x
j
∂
t
=
F
t
+
~
∇
F
F
=
d
dt
=
(
x,
t
)
.
=
d
dt
=
t
+
k
∂
∂
x
k
=
t
+
∂
∂
x
h
i
.
d
dx
x
=
γ
(
ξ
,
t
)
x
=
γ
(
ξ
,
t
)
=
ξ
+
t
Z
0
(
ξ
,
t
)
dτ
.
dx
dt
=
(
x,
t
)
,
x
(0)
=
ξ
,
ξ
→
γ
(
ξ
,
t
)
∈
C
1
ξ
→
x
J
=
det
³
∂
x
∂
ξ
´
dJ
dt
=
J
div
,
J
(0)
=
1
.
J
(
t
)
>
0
I
(
t
)
=
Z
ω
t
F
(
x,
t
)
dx
=
Z
ω
0
F
0
(
ξ
,
t
)
J
dξ
.
dI
dt
=
Z
ω
t
µ
dF
dt
+
F
div
¶
dx
=
Z
ω
t
(
F
t
+
div
(
F
))
dx.
r
E
(
r
)
=
1
r
Z
|
x
|
=
r
x
2
1
dS.
x
=
0
v
1
=
ξ
1
e
t
,
v
2
=
ξ
2
+
ξ
1
+
t
2
,
v
3
=
2
t,
ξ
=
(
ξ
1
,
ξ
2
,
ξ
3
)
t
=
0
t
=
0
1
v
1
=
x
2
−
2
x
3
,
v
2
=
x
3
−
x
1
,
v
3
=
2
x
1
−
x
2
.
=
d
/dt
F
=
1
div
ax
1
+
bx
2
+
cx
3
=
C
1
x
2
1
+
x
2
2
+
x
3
3
=
C
2
ρ,
U,
,
n
,
q
n
∈
C
1
(
Q
)
,
∈
C
(
Q
)
,
Q
=
{
(
x,
t
)
:
x
∈
Ω
t
,
t
∈
(0
,
T
)
}
⊂
R
4
n
,
q
n
Z
ω
t
µ
dρ
dt
+
ρ
div
¶
dx
=
0
∀
ω
t
.
ω
t
dρ
dt
+
ρ
div
=
0
∂
ρ
∂
t
+
div(
ρ
)
=
0
.
d
dt
Z
ω
t
ρF
dx
=
Z
ω
t
ρ
dF
dt
dx.
Z
∂
ω
t
n
dS
=
Z
ω
t
dx,
=
ρ
µ
d
dt
−
¶
,
7→
n
Q
P
:
Q
→
L
(
R
3
)
n
=
P
h
i
.
P
ω
t
ρ
d
dt
=
P
+
ρ
.
P
∗
=
P
P
P
P
P
h
i
P
P
=
−
p
(
x,
t
)
I
p
(
x,
t
)
P
Z
∂
ω
t
q
n
dS
=
Z
ω
t
Ψ
dx,
Ψ
=
ρ
d
dt
µ
U
+
2
2
¶
−
ρ
(
·
)
−
div
P
h
i
.
7→
q
n
(
x,
t
)
q
n
=
−
·
.
ω
t
q
n
>
0
ω
t
ρ
dU
dt
=
div
P
h
i
−
·
P
−
div
.
D
=
1
2
µ
∂
∂
x
+
∂
∗
∂
x
¶
P
:
D
=
div
P
h
i
−
·
P
ρ
dU
dt
=
P
:
D
−
div
.
P
=
P
∗
Ω
t
θ
(
x,
t
)
≥
0
S
(
ω
)
=
R
ω
ρs
dx
ω
s
dQ
=
θ
ds
Q
dQ
=
dU
+
dA,
dQ
=
θ
ds
dA
dU
d
S
(
ω
t
)
dt
≥
−
Z
∂
ω
t
(
·
)
θ
dS.
=
−
κ
∇
θ
,
κ
ρ
ds
dt
+
div
¡
θ
−
1
¢
≥
0
.
ρ
dU
dt
=
P
:
D
+
div(
κ
~
∇
θ
)
.
v
1
=
−
g
(
r
)
x
2
,
v
2
=
g
(
r
)
x
1
,
v
3
=
h
(
r
)
,
r
2
=
x
2
1
+
x
2
2
.
(
P
)
=
0
1
2
1
a
1
2
1
0
.
a
ω
ω
dρ
dt
=
0
div
=
0
|
|
=
1
,
n
=
0
=
0
,
P
=
−
pI
ω
∆
θ
>
0
θ
P
D
P
=
(
−
p
+
λ
div
)
I
+
2
µD
.
p
λ,
µ
λ
µ
U
=
U
(
ρ,
s
)
dA
=
pd
(
ρ
−
1
)
=
−
pdρ
ρ
2
.
P
P
:
D
P
=
−
~
∇
p
+
λ
~
∇
(div
)
+
2
µ
D
,
P
:
D
=
−
p
div
+
Φ
,
Φ
=
(
λ
+
2
3
µ
)(div
)
2
+
2
µD
0
:
D
0
D
0
D
θ
=
∂
U
∂
s
,
p
=
ρ
2
∂
U
∂
ρ
,
ρ
dU
dt
=
ρθ
ds
dt
−
p
div
.
M
0
dρ
dt
+
ρ
div
=
0
,
θ
=
∂
U
∂
s
,
p
=
ρ
2
∂
U
∂
ρ
,
ρ
d
dt
=
−
~
∇
p
+
(
λ
+
µ
)
~
∇
(div
)
+
µ
∆
+
ρ
,
ρθ
ds
dt
=
div
(
κ
~
∇
θ
)
+
Φ
,
dρ
/
dt
=
0
div
=
0
M
0
M
1
∂
ρ
∂
t
+
~
∇
ρ
=
0
,
div
=
0
,
ρ
d
dt
=
−
~
∇
p
+
µ
∆
+
ρ
.
ρ
=
C
onst
M
1
M
2
div
=
0
,
d
dt
=
−
1
ρ
~
∇
p
+
ν
∆
+
,
ν
=
ρ
−
1
µ.
ν
M
2
E
(
t
)
=
Z
ω
t
ρ
2
2
dx,
dE
dt
=
Z
∂
ω
t
(
n
)
dS
−
Z
ω
t
Φ
dx,
Φ
=
2
µD
:
D
Φ
d
dt
=
∂
∂
t
+
∂
∂
x
h
i
M
0
M
2
|
|
,
¯
¯
¯
¯
∂
∂
x
k
¯
¯
¯
¯
,
1
ν
¿
1
,
‹
1
2
3
›