ɧɢɢ ɥɸɦɢɧɟɫɰɟɧɬɧɵɯ ɫɜɟɬɢɥɶɧɢɤɨɜ 300ɥɤ, ɞɥɹ ɡɚɥɨɜ – 200ɥɤ, ɞɥɹ ɫɩɚɥɶɧɵɯ
ɤɨɦɧɚɬ – 75ɥɤ. ɉɪɢ ɢɫɩɨɥɶɡɨɜɚɧɢɹ ɥɚɦɩ ɧɚɤɚɥɢɜɚɧɢɹ ɷɬɢ ɰɢɮɪɵ ɞɨɥɠɧɵ
ɛɵɬɶ ɭɦɟɧɶɲɟɧɵ ɜɞɜɨɟ.
ɉɪɢ ɫɨɫɬɚɜɥɟɧɢɢ ɬɟɩɥɨɜɨɝɨ ɛɚɥɚɧɫɚ ɩɨɦɟɳɟɧɢɹ ɫɥɟɞɭɟɬ ɭɱɢɬɵɜɚɬɶ,
ɱɬɨ ɨɫɜɟɳɟɧɢɟ ɨɛɵɱɧɨ ɞɟɣɫɬɜɭɟɬ ɬɨɥɶɤɨ ɱɚɫɬɶ ɫɭɬɨɤ ɢ, ɤɚɤ
ɩɪɚɜɢɥɨ, ɬɟɩɥɨɩɨɫɬɭɩɥɟɧɢɹ ɨɬ ɧɟɝɨ ɧɟ ɫɨɜɩɚɞɚɸɬ ɜɨ ɜɪɟɦɟɧɢ ɫ ɩɨɫɬɭɩɥɟɧɢɟɦ
ɬɟɩɥɚ ɨɬ ɫɨɥɧɟɱɧɨɣ ɪɚɞɢɚɰɢɢ.
ɉɪɢɦɟɪ ɪɚɫɱɟɬɚ: ɩɨɦɟɳɟɧɢɹ ɚɭɞɢɬɨɪɢɢ (5·10·3)
F=2(5·10)+2(3·5)+2(3·10)=100+30+60=190 ɦ
2
Q
ɨɫɜ
=200·190·0.1·0.55=2090 ȼɬ.
Ɍɟɩɥɨɩɪɢɬɨɤɢ ɱɟɪɟɡ ɧɚɪɭɠɧɵɟ ɨɝɪɚɠɞɟɧɢɹ ɫ ɭɱɟɬɨɦ ɫɨɥɧɟɱɧɨɣ ɪɚɞɢɚɰɢɢ
ɉɪɢ ɫɨɫɬɚɜɥɟɧɢɢ ɬɟɩɥɨɜɨɝɨ ɛɚɥɚɧɫɚ ɩɨɦɟɳɟɧɢɹ ɞɥɹ ɬɟɩɥɨɝɨ ɩɟɪɢɨɞɚ ɝɨɞɚ
ɧɟɨɛɯɨɞɢɦɨ ɪɚɫɫɱɢɬɚɬɶ ɩɟɪɟɞɚɱɭ ɬɟɩɥɨɬɵ ɱɟɪɟɡ ɧɚɪɭɠɧɵɟ ɨɝɪɚɠɞɟɧɢɹ ɫ ɭɱɟɬɨɦ
ɞɟɣɫɬɜɢɹ ɫɨɥɧɟɱɧɨɣ ɪɚɞɢɚɰɢɢ.
Ⱦɥɹ ɥɟɬɧɢɯ ɫɭɬɨɤ ɯɚɪɚɤɬɟɪɧɵ ɡɧɚɱɢɬɟɥɶɧɵɟ ɤɨɥɟɛɚɧɢɹ ɬɟɦɩɟɪɚɬɭɪɵ
ɧɚɪɭɠɧɨɝɨ ɜɨɡɞɭɯɚ ɢ ɢɧɬɟɧɫɢɜɧɨɫɬɢ ɫɨɥɧɟɱɧɨɣ ɪɚɞɢɚɰɢɢ, ɩɨɞɚɸɳɟɣ ɧɚ
ɨɝɪɚɠɞɟɧɢɹ ɡɞɚɧɢɹ. ɉɨɫɬɭɩɥɟɧɢɟ ɬɟɩɥɚ ɭɫɬɚɧɚɜɥɢɜɚɸɬ ɞɥɹ ɠɚɪɤɢɯ ɥɟɬɧɢɯ
ɫɭɬɨɤ. ɉɨɥɚɝɚɸɬ, ɱɬɨ ɬɟɦɩɟɪɚɬɭɪɚ ɧɚɪɭɠɧɨɝɨ ɜɨɡɞɭɯɚ ɢɡɦɟɧɹɟɬɫɹ ɩɨ
ɝɚɪɦɨɧɢɱɟɫɤɨɦɭ ɡɚɤɨɧɭ ɫ ɫɭɬɨɱɧɵɦ ɩɟɪɢɨɞɨɦ. Ɇɚɤɫɢɦɚɥɶɧɨɟ ɡɧɚɱɟɧɢɟ
ɬɟɦɩɟɪɚɬɭɪɵ Ⱥ
tɧ
,t
ɧ
– ɫɪɟɞɧɟɟ ɡɧɚɱɟɧɢɟ. Z
tɧ
ɦɚɯ
=15 ɱɚɫ. (ɜɪɟɦɹ ɦɚɤɫɢɦɭɦɚ
ɧɚɪɭɠɧɨɣ ɬɟɦɩɟɪɚɬɭɪɵ).
ȼɥɢɹɧɢɟ ɫɨɥɧɟɱɧɨɝɨ ɨɛɥɭɱɟɧɢɹ ɨɝɪɚɠɞɟɧɢɣ ɭɱɢɬɵɜɚɟɬɫɹ ɞɨɛɚɜɥɟɧɢɟɦ ɤ
t
ɧ
ɷɤɜɢɜɚɥɟɧɬɧɨɣ ɬɟɦɩɟɪɚɬɭɪɧɨɣ ɞɨɛɚɜɤɢ ¨t
ɪ
¨t
ɪ
=ɪq/Į
ɧ
, ɝɞɟ q- ɪɚɞɢɚɰɢɨɧɧɚɹ ɩɥɨɬɧɨɫɬɶ ɬɟɩɥɨɜɨɝɨ ɩɨɬɨɤɚ; ɪ –
ɤɨɷɮɮɢɰɢɟɧɬ ɩɨɝɥɨɳɟɧɢɹ ɫɨɥɧɟɱɧɨɣ ɪɚɞɢɚɰɢɢ ɩɨɜɟɪɯɧɨɫɬɶɸ ɨɝɪɚɠɞɟɧɢɹ; Į
ɧ
–
ɤɨɷɮɮɢɰɢɟɧɬ ɬɟɩɥɨɨɬɞɚɱɢ ɧɚ ɧɚɪɭɠɧɨɣ ɩɨɜɟɪɯɧɨɫɬɢ ɨɝɪɚɠɞɟɧɢɹ.
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, t
ɭɫɥ
=t
ɧ
+¨t
ɪ
– ɭɫɥɨɜɧɚɹ ɫɪɟɞɧɹɹ ɬɟɦɩɟɪɚɬɭɪɚ ɧɚɪɭɠɧɨɝɨ ɜɨɡɞɭɯɚ.
ɇɚɪɭɠɧɵɟ ɨɝɪɚɠɞɟɧɢɹ ɩɨɦɟɳɟɧɢɣ ɦɨɝɭɬ ɛɵɬɶ ɦɚɫɫɢɜɧɵɦɢ
ɧɟɩɪɨɡɪɚɱɧɵɦɢ (ɫɬɟɧɵ, ɩɟɪɟɤɪɵɬɢɹ) ɢ ɥɭɱɟɩɪɨɡɪɚɱɧɵɦɢ (ɨɤɧɚ, ɜɢɬɪɢɧɵ); ɱɟɪɟɡ
ɦɚɫɫɢɜɧɵɟ ɨɝɪɚɠɞɟɧɢɹ ɜɧɟɲɧɢɟ ɬɟɩɥɨɜɵɟ ɜɨɡɞɟɣɫɬɜɢɹ ɩɟɪɟɞɚɸɬɫɹ
ɢɡɦɟɧɟɧɧɵɦɢ ɩɨ ɜɟɥɢɱɢɧɟ ɢ ɫ ɡɚɩɚɡɞɵɜɚɧɢɟɦ ɜɨ ɜɪɟɦɟɧɢ. ɑɟɪɟɡ ɩɪɨɡɪɚɱɧɵɟ
ɨɝɪɚɠɞɟɧɢɹ ɫɨɥɧɟɱɧɚɹ ɪɚɞɢɚɰɢɹ ɧɟɩɨɫɪɟɞɫɬɜɟɧɧɨ ɩɪɨɧɢɤɚɟɬ ɜ ɩɨɦɟɳɟɧɢɟ ɢ
ɩɟɪɟɞɚɱɚ ɬɟɩɥɚ ɩɪɨɢɫɯɨɞɢɬ ɩɪɚɤɬɢɱɟɫɤɢ ɛɟɡ ɡɚɩɚɡɞɵɜɚɧɢɹ.
ɋɪɟɞɧɟɟ ɩɨɫɬɭɩɥɟɧɢɟ ɬɟɩɥɨɬɵ ɱɟɪɟɡ ɦɚɫɫɢɜɧɨɟ ɨɝɪɚɠɞɟɧɢɟ ɨɩɪɟɞɟɥɹɟɬɫɹ
ɩɨ ɭɪɚɜɧɟɧɢɸ ɬɟɩɥɨɩɟɪɟɞɚɱɢ:
Q
1
=k
1
·F
1
·(t
ɭɫɥ
-t
ɜ
),
ɝɞɟ k
1
– ɤɨɷɮɮɢɰɢɟɧɬ ɬɟɩɥɨɩɟɪɟɞɚɱɢ,
F
1
– ɩɥɨɳɚɞɶ ɨɝɪɚɠɞɟɧɢɹ,
t
ɜ
– ɬɟɦɩɟɪɚɬɭɪɚ ɜɨɡɞɭɯɚ ɩɨɦɟɳɟɧɢɹ.
ɉɨɫɬɭɩɥɟɧɢɟ ɬɟɩɥɨɬɵ ɱɟɪɟɡ ɩɪɨɡɪɚɱɧɵɟ ɨɝɪɚɠɞɟɧɢɹ (ɨɤɧɚ, ɜɢɬɪɢɧɵ)
ɩɪɨɢɫɯɨɞɢɬ ɤɚɤ ɡɚ ɫɱɟɬ ɬɟɩɥɨɩɟɪɟɞɚɱɢ Q
2ɬ
, ɬɚɤ ɢ ɡɚ ɫɱɟɬ ɢɡɥɭɱɟɧɢɹ Q
2ɪ
. ɋɪɟɞɧɟɟ
ɡɧɚɱɟɧɢɟ ɬɟɩɥɨɜɨɝɨ ɩɨɬɨɤɚ ɱɟɪɟɡ ɩɪɨɡɪɚɱɧɵɟ ɨɝɪɚɠɞɟɧɢɹ ɦɨɠɧɨ ɨɩɪɟɞɟɥɢɬɶ ɩɨ
ɮɨɪɦɭɥɟ:
Q
2
=Q
2ɬ
+Q
2ɪ
=k
2
·F
2
·(t
ɧ.ɭɫɥ
-t
ɜ
)+ȕ
1
·ȕ
2
·F
2
·q
0
,