122 Carsten Damm
2. A. Aho, J. Ullman, and M. Yannakakis. On notions of information transfer in
VLSI-circuits. In Proceedings of the 15th Annual ACM Symposium on Theory
of Computing, pages 133–139, 1983.
3. L. Babai, P. Frankl, and J. Simon. Complexity classes in communication com-
plexity theory. In Proceedings of the 27th Annual Symposium on Foundations
of Computer Science, FOCS 86. IEEE Computer Society, Toronto, pp. 337-347,
1986.
4. G.S. Brodal and T. Husfeldt. A communication complexity proof that sym-
metric functions have logarithmic depth. Brics report series. http://www.brics.
dk/RS/96/1/BRICS-RS-96-1.ps.gz.
5. A.K. Chandra, M.L. Furst, and R.J. Lipton. Multi-party protocols. In STOC.,
Boston, ACM, pages 94–99, 1983.
6. C. Damm and M. Holzer. Automata that take advice. In Mathematical Foun-
dations of Computer Science, LNCS, vol 969, pp. 149-158, 1995.
7. C. Damm, S. Jukna, and J. Sgall. Some bounds on multiparty communication
complexity of pointer jumping. Computational Complexity, 7(2):109–127, 1998.
8. C. Damm, M. Krause, C. Meinel, and S. Waack. On relations between counting
communication complexity classes. Journal of Computer and System Sciences,
69:259–280, 2004.
9. R. de Wolf. Quantum communication and complexity. Theoretical Computer
Science, 287:337–353, 2002.
10. M. Dietzfelbinger, J. Hromkovič, and G. Schnitger. A comparison of two lower-
bound methods for communication complexity. Theoretical Computer Science,
168(1):39–51, 1996.
11. P. Duriš, Z. Galil, and G. Schnitger. Lower bounds on communication complex-
ity. IC, 73:1–22, 1987.
12. V. Grolmusz. The bns lower bound for multi-party protocols is nearly optimal.
Information and Computation, 112:51–54, 1994.
13. B. Halstenberg and R. Reischuk. Different modes of communication. SIAM
Journal on Computing, 22, 1993.
14. J. Hromkovič. Randomized communicating protocols (a survey). In Proceed-
ings of the International Symposium on Stochastic Algorithms: Foundations and
Applications. LNCS, vol. 2264, Springer, pp. 1-32.
15. J. Hromkovič. Communication Complexity and Parallel Computing. Springer,
Berlin, 1997.
16. J. Hromkovič and G. Schnitger. Pushdown automata and multicounter ma-
chines, a comparison of computation modes. In Automata, Languages and Pro-
gramming: 30th International Colloquium, pages 66–80, 2003.
17. M. Karchmer, E. Kushilevitz, and N. Nisan. Fractional covers and communica-
tion complexity. SIAM Journal on Discrete Mathematics, 8:76–92, 1995.
18. M. Karchmer, I. Newman, M. Saks, and A. Wigderson. Non-deterministic com-
munication complexity with few witnesses. Journal of Computer and System
Sciences, 49:247–257, 1994.
19. M. Karchmer and A. Wigderson. Monotone circuits for connectivity require
super-logarithmic depth. In STOC., pages 539–550, 1988.
20. R.M. Karp and R.J. Lipton. Turing machines that take advice. L’Enseignement
Mathématique, 28:191–209, 1982.
21. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University
Press, 1996.