References 657
Darmois, G. (1927). Les
´
equations de la gravitation einsteinienne. M
´
em. Sc. Math. 25, 1–47.
Davies, M. B., W. Benz, T. Piran, and F. K. Thielemann (1994). Merging neutron stars. 1. Initial
results for coalescence of noncorotating systems. Astrophys. J. 431, 742–753.
De Donder, T. (1921). La gravifique einsteinienne. Gauthier-Villars, Paris.
De Villiers, J.-P. and J. F. Hawley (2003). A Numerical Method for General Relativistic
Magnetohydrodynamics. Astrophys. J. 589, 458–480.
De Villiers, J.-P., J. F. Hawley, and J. H. Krolik (2003). Magnetically Driven Accretion Flows in
the Kerr Metric. I. Models and Overall Structure. Astrophys. J. 599, 1238–1253.
De Villiers, J.-P., J. Staff, and R. Ouyed (2005). GRMHD Simulations of Disk/Jet Systems:
Application to the Inner Engines of Collapsars. pp. 1–16.
Dedner, A., F. Kemm, D. Kr
¨
oner, C.-D. Munz, T. Schnitzer, and M. Wesenberg (2002). Hyperbolic
Divergence Cleaning for the MHD Equations. Journal of Computational Physics 175, 645–
673.
Del Zanna, L., O. Zanotti, N. Bucciantini, and P. Londrillo (2007). ECHO: an Eulerian Conserva-
tive High Order scheme for general relativistic magnetohydrodynamics and magnetodynamics.
Astron. Ap. 473, 11–30.
Dennett-Thorpe, J., A. H. Bridle, R. A. Laing, and P. A. G. Scheuer (1999). Asymmetry of jets, lobe
size and spectral index in radio galaxies and quasars. Mon. Not. R. Astron. Soc. 304, 271–280.
Dennison, K. A., T. W. Baumgarte, and H. P. Pfeiffer (2006). Approximate initial data for binary
black holes. Phys.Rev.D74, 064016/1–13.
Detweiler, S. (1987). Evolution of the contraint equations in general relativity. Phys. Rev. D 35,
1095–1099.
Detweiler, S. (1989). Kepler’s third law in general relativity. In C. R. Evans, L. S. Finn, and
D. W. Hobill (Eds.), Frontiers in numerical relativity, pp. 43–56. Cambridge University Press,
Cambridge.
Detweiler, S. L. and L. Lindblom (1977). On the evolution of the homogeneous ellipsoidal
figures. Astrophys. J. 213, 193–199.
Dimmelmeier, H., J. A. Font, and E. M
¨
uller (2002a). Relativistic simulations of rotational core
collapse I. Methods, initial models, and code tests. Astron. Ap. 388, 917–935.
Dimmelmeier, H., J. A. Font, and E. M
¨
uller (2002b). Relativistic simulations of rotational core
collapse II. Collapse dynamics and gravitational radiation. Astron. Ap. 393, 523–542.
d’Inverno, R. (1992). Introducing Einstein’s Relativity. Oxford University Press, Oxford.
Douchin, F. and P. Haensel (2001). A unified equation of state of dense matter and neutron star
structure. Astron. Ap. 380, 151–167.
Dreyer, O., B. Krishnan, D. Shoemaker, and E. Schnetter (2003). Introduction to isolated horizons
in numerical relativity. Phys. Rev. D 67, 024018/1–14.
Duez, M. D., T. W. Baumgarte, and S. L. Shapiro (2001). Computing the complete gravitational
wavetrain from relativistic binary inspiral. Phys. Rev. D 63, 084030/1–6.
Duez, M. D., T. W. Baumgarte, S. L. Shapiro, M. Shibata, and K. Ury
¯
u (2002). Comparing
the inspiral of irrotational and corotational binary neutron stars. Phys. Rev. D 65, 024016/
1–8.
Duez, M. D., E. T. Engelhard, J. M. Fregeau, K. M. Huffenberger, and S. L. Shapiro (1999).
Binary-induced collapse of a compact, collisionless cluster. Phys. Rev. D 60, 104024/1–8.