5.6. THE EFFECTS OF REAL GASES 87
Table -5.3. Isothermal Table (continue)
M
T
0
T
0
?
P
0
P
0
?
A
A
?
P
P
?
A×P
A
∗
×P
0
F
F
∗
1.30 1.464 0.90302 1.247 0.61693 0.76923 1.079
1.40 1.681 0.85853 1.399 0.51069 0.71429 1.114
1.50 1.939 0.80844 1.599 0.41686 0.66667 1.153
1.60 2.245 0.75344 1.863 0.33554 0.62500 1.194
1.70 2.608 0.69449 2.209 0.26634 0.58824 1.237
1.80 3.035 0.63276 2.665 0.20846 0.55556 1.281
1.90 3.540 0.56954 3.271 0.16090 0.52632 1.328
2.00 4.134 0.50618 4.083 0.12246 0.50000 1.375
2.50 9.026 0.22881 15.78 0.025349 0.40000 1.625
3.000 19.41 0.071758 90.14 0.00370 0.33333 1.889
3.500 40.29 0.015317 7.5E + 2 0.000380 0.28571 2.161
4.000 80.21 0.00221 9.1E + 3 2.75E−5 0.25000 2.438
4.500 1.5E + 2 0.000215 1.6E + 5 1.41E−6 0.22222 2.718
5.000 2.8E + 2 1.41E−5 4.0E + 6 0.0 0.20000 3.000
5.500 4.9E + 2 0.0 1.4E + 8 0.0 0.18182 3.284
6.000 8.3E + 2 0.0 7.3E + 9 0.0 0.16667 3.569
6.500 1.4E + 3 0.0 5.3E+11 0.0 0.15385 3.856
7.000 2.2E + 3 0.0 5.6E+13 0.0 0.14286 4.143
7.500 3.4E + 3 0.0 8.3E+15 0.0 0.13333 4.431
8.000 5.2E + 3 0.0 1.8E+18 0.0 0.12500 4.719
8.500 7.7E + 3 0.0 5.4E+20 0.0 0.11765 5.007
9.000 1.1E + 4 0.0 2.3E+23 0.0 0.11111 5.296
9.500 1.6E + 4 0.0 1.4E+26 0.0 0.10526 5.586
10.00 2.2E + 4 0.0 1.2E+29 0.0 0.100000 5.875
5.6 The effects of Real Gases
To obtained expressions for non–ideal gas it is commonly done by reusing the ideal gas
model and introducing a new variable which is a function of the gas properties like the
critical pressure and critical temperature. Thus, a real gas equation can be expressed in
equation (4.22). Differentiating equation (4.22) and dividing by equation (4.22) yields
dP
P
=
dz
z
+
dρ
ρ
+
dT
T
(5.116)
Again, Gibb’s equation (5.27) is reused to related the entropy change to the change
in thermodynamics properties and applied on non-ideal gas. Since ds = 0 and utilizing
the equation of the state dh = dP/ρ. The enthalpy is a function of the temperature
and pressure thus, h = h(T, P ) and full differential is
dh =
µ
∂h
∂T
¶
P
dT +
µ
∂h
∂P
¶
T
dP (5.117)