LIST OF FIGURES xi
10.6 The effects of increase of
4fL
D
on the Fanno line . . . . . . . . . . . . 194
10.7 The development properties in of converging nozzle . . . . . . . . . . . 195
10.8 M
in
and ˙m as a function of the
4fL
D
. . . . . . . . . . . . . . . . . . . 195
10.9 M
1
as a function M
2
for various
4fL
D
. . . . . . . . . . . . . . . . . . 197
10.10 M
1
as a function M
2
. . . . . . . . . . . . . . . . . . . . . . . . . . . 198
10.11 The pressure distribution as a function of
4fL
D
for a short
4fL
D
. . . . 199
10.12 The pressure distribution as a function of
4fL
D
for a long
4fL
D
. . . . . 200
10.13 The effects of pressure variations on Mach number profile . . . . . . . 201
10.14 Mach number as a function of
4fL
D
when the total
4fL
D
= 0.3 . . . . . 202
10.15 Schematic of a “long” tub e in supersonic branch . . . . . . . . . . . . 203
10.16 The extra tube length as a function of the shock location . . . . . . . 204
10.17 The maximum entrance Mach numb er as a function of
4fL
D
. . . . . . 205
10.18 Unchoked flow showing the hypothetical “full” tube . . . . . . . . . . 208
10.19 The results of the algorithm showing the conversion rate. . . . . . . . 209
10.20 Solution to a missing diameter . . . . . . . . . . . . . . . . . . . . . . 212
10.21 M
1
as a function of
4fL
D
comparison with Isothermal Flow . . . . . . . 213
10.22 “Moody” diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
11.1 The control volume of Rayleigh Flow . . . . . . . . . . . . . . . . . . . 219
11.2 The temperature entropy diagram for Rayleigh line . . . . . . . . . . . 221
11.3 The basic functions of Rayleigh Flow (k=1.4) . . . . . . . . . . . . . . 226
12.1 The two different classifications of models . . . . . . . . . . . . . . . . 233
12.2 A schematic of two possible . . . . . . . . . . . . . . . . . . . . . . . . 234
12.3 A schematic of the control volumes used in this model . . . . . . . . . 234
12.4 The pressure assumptions in the chamber and tube entrance . . . . . . 235
12.5 The reduced time as a function of the modified reduced pressure . . . . 242
12.6 The reduced time as a function of the modified reduced pressure . . . . 244
13.1 The control volume of the “Cylinder”. . . . . . . . . . . . . . . . . . . 250
13.2 The pressure ratio as a function of the dimensionless time . . . . . . . 255
13.3
¯
P as a function of
¯
t for choked condition . . . . . . . . . . . . . . . . . 256
13.4 The pressure ratio as a function of the dimensionless time . . . . . . . 256
14.1 A view of a normal sho ck as a limited case for oblique shock . . . . . . 257
14.2 The oblique shock or Prandtl–Meyer function regions . . . . . . . . . . 258
14.3 A typical oblique shock schematic . . . . . . . . . . . . . . . . . . . . 259
14.4 Flow around spherically blunted 30
◦
cone-cylinder . . . . . . . . . . . . 265
14.5 The different views of a large inclination angle . . . . . . . . . . . . . . 266
14.6 The three different Mach numb ers . . . . . . . . . . . . . . . . . . . . 267
14.7 The various coefficients of three different Mach numbers . . . . . . . . 271
14.8 The “imaginary” Mach waves at zero inclination. . . . . . . . . . . . . 272
14.9 The D, shock angle, and M
y
for M
1
= 3 . . . . . . . . . . . . . . . . . 273
14.10 The possible range of solutions . . . . . . . . . . . . . . . . . . . . . 275
14.11 Two dimensional wedge . . . . . . . . . . . . . . . . . . . . . . . . . . 276