Файлы
Обратная связь
Для правообладателей
Найти
Антоник В.Г. Численные методы: математический анализ и дифференциальные уравнения
Файлы
Академическая и специальная литература
Математика
Вычислительная математика
Назад
Скачать
Подождите немного. Документ загружается.
f
(
x
)
[
a,
b
]
I
(
f
)
=
b
Z
a
f
(
x
)
dx
,
f
i
,
i
=
1
,
n
f
(
x
)
x
1
,
.
.
.
,
x
n
[
a,
b
]
f
i
=
f
(
x
i
)
,
i
=
1
,
n
b
Z
a
f
(
x
)
dx
≈
n
X
i
=1
c
i
f
(
x
i
)
4
=
S
(
f
)
S
(
f
)
c
i
x
i
R
n
(
f
)
=
I
(
f
)
−
S
(
f
)
.
f
(
x
)
R
n
(
f
)
=
0
S
(
f
)
m
f
(
x
)
=
x
k
,
k
=
1
,
m
f
(
x
)
=
x
m
+1
R
n
(
x
k
)
=
0
,
k
=
1
,
m,
R
n
(
x
m
+1
)
6
=
0
[
a,
b
]
a
=
x
0
<
x
1
<
.
.
.
<
x
n
−
1
<
x
n
=
b
,
x
i
−
x
i
−
1
=
h
,
i
=
1
,
n
h
=
b
−
a
n
I
(
f
)
=
n
X
i
=1
x
i
Z
x
i
−
1
f
(
x
)
dx
.
f
(
x
)
[
x
i
−
1
,
x
i
]
L
0
,i
(
x
)
L
0
,i
(
x
)
x
i
−
1
f
(
x
i
−
1
)
L
0
,i
(
x
)
=
f
(
x
i
−
1
)
x
i
Z
x
i
−
1
f
(
x
)
dx
≈
x
i
Z
x
i
−
1
L
0
,i
dx
=
hf
(
x
i
−
1
)
.
S
(
f
)
=
h
n
X
i
=1
f
(
x
i
−
1
)
.
|
R
(
f
)
|
≤
h
(
b
−
a
)
2
max
a
≤
x
≤
b
|
f
0
(
x
)
|
.
L
0
,i
(
x
)
(
x
i
,
f
(
x
i
))
S
(
f
)
=
h
n
X
i
=1
f
(
x
i
)
.
x
i
[
x
i
−
1
,
x
i
]
x
i
=
x
i
−
1
+
x
i
2
L
0
,i
(
x
)
(
x
i
,
f
(
x
i
))
S
(
f
)
=
h
n
X
i
=1
f
(
x
i
)
.
|
R
(
f
)
|
≤
h
2
(
b
−
a
)
24
max
a
≤
x
≤
b
|
f
00
(
x
)
|
.
1
2
f
(
x
)
L
1
,i
(
x
)
f
(
x
i
−
1
)
,
f
(
x
i
)
L
1
,i
(
x
)
=
1
h
[(
x
−
x
i
−
1
)
f
(
x
i
)
−
(
x
−
x
i
)
f
(
x
i
−
1
)]
.
x
i
Z
x
i
−
1
f
(
x
)
dx
≈
x
i
Z
x
i
−
1
L
1
,i
(
x
)
dx
=
f
(
x
i
−
1
)
+
f
(
x
i
)
2
h
.
S
(
f
)
=
h
Ã
f
(
x
0
)
+
f
(
x
n
)
2
+
n
−
1
X
i
=1
f
(
x
i
)
!
.
|
R
(
f
)
|
≤
h
2
(
b
−
a
)
12
max
a
≤
x
≤
b
|
f
00
(
x
)
|
.
[
x
i
−
1
,
x
i
]
x
i
=
x
i
−
1
+
x
i
2
L
2
,i
(
x
)
x
i
−
1
,
f
(
x
i
−
1
)
x
i
,
f
(
x
i
)
x
i
,
f
(
x
i
)
x
i
Z
x
i
−
1
f
(
x
)
dx
≈
x
i
Z
x
i
−
1
L
2
,i
(
x
)
dx
=
h
6
(
f
(
x
i
−
1
)
+
4
f
(
x
i
)
+
f
(
x
i
))
.
S
(
f
)
=
h
6
³
f
(
x
0
)
+
f
(
x
n
)
+
2(
f
(
x
1
)
+
.
.
.
+
f
(
x
n
−
1
))+
+4(
f
(
x
1
)
+
.
.
.
+
f
(
x
n
))
´
.
|
R
(
f
)
|
≤
h
4
(
b
−
a
)
2880
max
a
≤
x
≤
b
|
f
I
V
(
x
)
|
.
f
(
x
)
=
x
2
I
=
4
Z
0
f
(
x
)
dx
n
=
8
a
=
0
,
b
=
4
h
=
b
−
a
n
=
1
2
.
f
(
x
)
x
i
f
i
I
≈
1
2
(0
+
0
.
25
+
1
+
2
.
25
+
4
+
6
.
25
+
9
+
12
.
25)
=
17
.
5
.
max
0
≤
x
≤
4
|
f
0
(
x
)
|
=
max
0
≤
x
≤
4
|
2
x
|
=
8
.
|
R
|
≤
4
2
·
2
·
8
=
8
.
I
(
f
)
≈
S
(
f
)
=
n
X
i
=0
c
i
f
(
x
i
)
.
c
i
,
i
=
0
,
n
n
f
(
x
)
=
x
k
k
=
0
,
n
S
(
x
k
)
=
I
(
x
k
)
,
k
=
0
,
n
.
c
0
,
c
1
,
.
.
.
,
c
n
I
(
f
)
=
b
Z
a
f
(
x
)
dx
,
n
=
1
,
x
0
=
a,
x
1
=
b
S
(
f
)
=
c
0
f
(
x
0
)
+
c
1
f
(
x
1
)
=
c
0
f
(
a
)
+
c
1
f
(
b
)
.
c
0
,
c
1
I
(
x
0
)
=
b
Z
a
x
0
dx
=
b
Z
a
dx
=
b
−
a
,
I
(
x
1
)
=
b
Z
a
x
1
dx
=
1
2
b
2
−
1
2
a
2
,
S
(
x
0
)
=
c
0
a
0
+
c
1
b
0
=
c
0
+
c
1
,
S
(
x
1
)
=
c
0
a
1
+
c
1
b
1
=
ac
0
+
bc
1
.
c
0
+
c
1
=
b
−
a
,
ac
0
+
bc
1
=
b
2
−
a
2
2
.
c
0
=
c
1
=
b
−
a
2
.
S
(
f
)
=
b
−
a
2
f
(
a
)
+
b
−
a
2
f
(
b
)
=
f
(
a
)
+
f
(
b
)
2
(
b
−
a
)
.
n
=
1
¤
f
(
x
)
=
(
x
+
1)
3
I
=
4
Z
0
f
(
x
)
dx
n
3
2
n
I
f
(
x
)
=
−
(
x
−
1)
3
I
=
3
Z
−
1
f
(
x
)
dx
n
5
4
n
I
f
(
x
)
=
x
2
−
1
I
=
2
Z
−
2
f
(
x
)
dx
.
n
=
8
I
k
=
4
Z
0
x
k
dx
,
k
=
1
,
2
,
3
,
4
h
=
1
I
=
2
Z
−
2
(1
+
x
+
x
2
+
x
3
+
x
4
)
dx
h
=
1
I
I
(
f
)
=
b
Z
a
f
(
x
)
dx
,
‹
1
2
3
4
5
6
7
›