2 1 Introduction to Computation
In (1.2) α
and α
are the heat transfer coefficients of the heating fluid and the
heated fluid (in W/m
2
K), r espectively, x
w
is the thickness of the tube wall (in m),
k is the thermal conductivity of the material of the tubes (in W/mK), and d
o
, d
m
, d
i
are t he external, medium and internal diameters of the tubes (in m).
On the other hand, if the overall heat transfer coefficient is in reference to the
internal surface and indicated by U
i
,wehave:
U
i
=
1
1
α
+
x
w
k
d
i
d
m
+
1
α
d
i
d
o
(1.3)
The computation criteria of the heat transfer coefficients α
and α
are discussed
in the specialized literature (for instance in “Engineering Heat Transfer” by the
author) with reference to different types of fluid and to its physical and thermal
characteristics, its temperature, its dynamic characteristics, as well as its geometrical
characteristics of the tubes making up the bank.
Up to this point we assumed the temperatures of both fluids to be constant but in
both heat exchangers and tube banks the heating fluid transferring heat cools down,
whereas the heated fluid receiving it warms up.
In other words, the heat transfer implies the variability of temperatures of both
fluids.
This fact leads to a series of consequences to be discussed in the following
chapters.
Here are some preliminary considerations.
The variability of the temperatures of the two fluids implies the necessity to
identify a mean difference in temperature to allow the correct calculation of the
heat transfer.
In other words (1.1) must be substituted by the following equation:
q = USt
m
(1.4)
In (1.4) t
m
is, i n fact, the mean difference in temperature.
The specific heat of the fluids which is crucial for the amount of cooling of the
heating fluid and for the heating of the heated fluid, varies with temperature. It will
be necessary to introduce a mean specific heat, and this requires familiarity with the
enthalpy of fluids.
The overall heat transfer coefficient to be considered constant, actually varies
with temperature, since the heat transfer coefficients of both fluids vary with it.
Therefore, it will be necessary to decide to which temperatures to refer the value
of the heat transfer coefficients or the overall heat transfer coefficient for a correct
computation of the heat transfer.
The way in which the two fluids interact with each other is crucial. There are
two classic types of interaction, one with the fluids in parallel flow and one with the
fluids in counter flow (Fig. 1.1).