December 28, 2009 12:15 WSPC - Proceedings Trim Size: 9in x 6in recent
216
7. O. Kov´aˇcik and J. R´akosn´ık, On spaces L
p(x)
and W
1,p(x)
, Czechoslovak
Math. J. 41(1991) 592-618.
8. X. L. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces
W
k,p(x)
(Ω), J. Math. Anal. Appl. 262(2001) 749-760.
9. X. L. Fan and D. Zhao, On the spaces L
p(x)
(Ω) and W
m,p(x)
(Ω), J. Math.
Anal. Appl. 263(2001) 424-446.
10. M. Mihˇailescu, Existence and multiplicity of solutions for a Neumann prob-
lem involving the p(x)-Laplace operator, Nonlinear Anal., 67(2007) 1419-
1425.
11. J. Musielak, Orlicz spaces and modular spaces. Lecture Notes in Mathemat-
ics, 1034. Springer-Verlag, Berlin (1983).
12. B. Ricceri, On three critical points theorem, Arch. Math. (Basel) 75 (2000),
220-226.
13. B. Ricceri, A three critical points theorem revisited. Nonlinear Anal. to ap-
pear (2008).
14. B. Ricceri, A general variational principle and some of its applications. J.
Comput. Appl. Math. 113(2000) 401-410.
15. M. Ruzicka, Electrorheological fluids: Modelling and Mathematical Theory,
Lecture Notes in Math., Springer-Verlag, Berlin (2002).
16. M. Ruzicka, Flow of shear dependent electrorheological fluids. C. R. A. S.
Sci. Paris. S´er. I. Math. 329(1999) 393-398.
17. X. Shi and X. Ding, Existence and multiplicity of solutions for a general
p(x)-Laplacian Neumann problem, Nonlinear Anal. to appear
18. J. Simon, r´egularit´e de la solution d’une equation non lin´eaire dans IR
N
.
LMN 665, P. Benilan ed., Berlin-Heidelberg-New York 1978.
19. E. Zeidler, Nonlinear functional analysis and its applications. Vol. II/B.
Berlin-Heidelberg-New York 1978.