
December 28, 2009 12:15 WSPC - Proceedings Trim Size: 9in x 6in recent
203
Thus complete the proof of Lemma 4.2.
Appendix 2: We claim that v
n
∈ K
ψ
(v
n
defined in (35))
We have e
γw
2
n,k
≤ c
k
, let η =
1
c
k
Since v
n
= u
n
− ηϕ
k
(w
n,k
), we remark
that
v
n
≥
u
n
if w
n,k
≤ 0
u
n
− w
n,k
if w
n,k
≥ 0
then it suffices to prove that u
n
− w
n,k
≥ ψ we have
u
n
− w
n,k
=
T
k
(u) if |u
n
| ≤ k
u
n
− k + T
k
(u) if u
n
≥ k
u
n
+ k + T
k
(u) if u
n
≤ −k
which implies that
u
n
− w
n,k
≥
T
k
(u) if |u
n
| ≤ k
T
k
(u) if u
n
≥ k
u
n
if u
n
≤ −k
since u ∈ K
ψ
, k ≥ kv
0
k
∞
then T
k
(u) ≥ ψ, which implies that u
n
−w
n,k
≥ ψ.
Finally since v
n
∈ W
1,p
0
(Ω, w) then v
n
∈ K
ψ
.
References
1. L. Aharouch and Y. Akdim, Existence of solution of degenerated unilateral
Problems with L
1
data, Annale Math´ematique Blaise Pascal Vol. 11 (2004)
pp 47-66.
2. L. Aharouch, Y. Akdim and E. Azroul, Quasilinear degenerate elliptic
unilateral problems, AAA 2005:1 (2005) 11-31. DOI: 10.1155/AAA.2005.11
3. Y. Akdim, E. Azroul and A. Benkirane, Existence Results for Quasilin-
ear Degenerated Equations via Strong Convergence of Truncations, Revista
Matem´atica Complutence, Madrid, (2004), 17; N 2, 359-379.
4. Y. Akdim, E. Azroul and A. Benkirane, Existence of solution for Quasi-
linear Degenerated Unilateral Problems, Annale Math´ematique Blaise Pascal
Vol. 10 (2003) pp 1-20.
5. P. B
´
enilan, L. Boccardo, T. Gallouet, R. Gariepy, M. Pierre and J.
L. V
´
azquez, An L
1
-theory of existence and uniqueness of nonlinear elliptic
equations, Ann. Scuola Norm. Sup. Pisa 22 (1995), 240-273.
6. L. Boccardo, F. Murat, and J. P. Puel , Existence of bounded solutions for
nonlinear elliptic unilateral problems, Ann. Mat. Pura e Appl., 152 (1988)
183-196.
7. L. Boccardo, T. Gallou
¨
et and F. Murat, A unified presentation of two
existence results for problems with natural growth, in Progress in PDE, the
Metz surveys 2, M. Chipot editor, Research in Mathematics, Longman, 296
(1993), 127-137.