74 L. Caffarelli and L. Silvestre
References
1. Luis A. Caffarelli and Xavier Cabr´e. Fully nonlinear elliptic equations, vol-
ume 43 of American Mathematical Society Colloquium Publications. American
Mathematical Society, Providence, RI, 1995.
2. Luis A. Caffarelli and Rafael de la Llave. Planelike minimizers in periodic media.
Comm. Pure Appl. Math., 54(12):1403–1441, 2001.
3. Luis A. Caffarelli, Ki-Ahm Lee, and Antoine Mellet. Singular limit and homoge-
nization for flame propagation in periodic excitable media. Arch. Ration. Mech.
Anal., 172(2):153–190, 2004.
4. Luis A. Caffarelli, Ki-Ahm Lee, and Antoine Mellet. Homogenization and flame
propagation in periodic excitable media: the asymptotic speed of propagation.
Comm. in Pure and Appl. Math.,Toappear.
5. Luis A. Caffarelli and Antoine Mellet. Capillary drops on an inhomogeneous
surface. Preprint, 2005.
6. Luis A. Caffarelli and Antoine Mellet. Capillary drops on an inhomogeneous
surface: Contact angle hysteresis. Preprint, 2005.
7. Luis A. Caffarelli, Panagiotis E. Souganidis, and Lihe Wang. Homogenization
of fully nonlinear, uniformly elliptic and parabolic partial differential equations
in stationary ergodic media. Comm. Pure Appl. Math., 58(3):319–361, 2005.
8. Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide to
viscosity solutions of second order partial differential equations. Bull. Amer.
Math. Soc. (N.S.), 27(1):1–67, 1992.
9. Gianni Dal Maso and Luciano Modica. Nonlinear stochastic homogenization.
Ann. Mat. Pura Appl. (4), 144:347–389, 1986.
10. Gianni Dal Maso and Luciano Modica. Nonlinear stochastic homogenization
and ergodic theory. J. Reine Angew. Math., 368:28–42, 1986.
11. Lawrence C. Evans. Periodic homogenisation of certain fully nonlinear partial
differential equations. Proc.Roy.Soc.EdinburghSect.A, 120(3-4):245–265,
1992.
12. Robert Finn. Equilibrium capillary surfaces, volume 284 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer-Verlag, New York, 1986.
13. Enrico Giusti. Minimal surfaces and functions of bounded variation, volume 80
of Monographs in Mathematics.Birkh¨auser Verlag, Basel, 1984.
14. Eduardo H. A. Gonzalez. Sul problema della goccia appoggiata. Rend. Sem.
Mat. Univ. Padova, 55:289–302, 1976.
15. C Huh and S.G Mason. Effects of surface roughness on wetting (theoretical).
J. Colloid Interface Sci, 60:11–38.
16. J.F. Joanny and P.G. de Gennes. A model for contact angle hysteresis. J. Chem.
Phys., 81, 1984.
17. L. Leger and J.F. Joanny. Liquid spreading. Rep. Prog. Phys., pages 431–486,
1992.
18. J¨urgen Moser. Minimal solutions of variational problems on a torus. Ann. Inst.
H. Poincar´e Anal. Non Lin´eaire, 3(3):229–272, 1986.
19. J¨urgen Moser. A stability theorem for minimal foliations on a torus. Ergodic
Theory Dynam. Systems,8
∗
(Charles Conley Memorial Issue):251–281, 1988.
20. J¨urgen Moser. Minimal foliations on a torus. In Topics in calculus of variations
(Montecatini Terme, 1987), volume 1365 of Lecture Notes in Math., pages 62–99.
Springer, Berlin, 1989.