Учебное пособие - ОДЕССА: 2003 - 82 стр.
Книга 2 отводится для линейной алгебры. Из фундаментального понятия отображения вводятся понятия внутренних и внешних законов композиции. Рассмотрены условия, при которых действия этих законов на множестве пре-вращает их в группы, кольца, поля и векторные пространства. Изучены: поле комплексных чисел; кольцо многочленов; векторное пространство многочленов; векторное пространство свободных векторов в геометрическом пространстве; векторы в n – мерном арифметическом пространстве. Из понятий векторного пространства и линейного отображения одного векторного пространства в другое проистекают понятия матриц, определителей и системы линейных уравнений. Отдельной главой рассмотрено приведение матриц, путем замены базиса к более простой форме. Сравнительно подробно, это демонстрируется для приведения квадратной матрицы к диагональному виду, а квадратичной формы к каноническому виду.
Книга 2 отводится для линейной алгебры. Из фундаментального понятия отображения вводятся понятия внутренних и внешних законов композиции. Рассмотрены условия, при которых действия этих законов на множестве пре-вращает их в группы, кольца, поля и векторные пространства. Изучены: поле комплексных чисел; кольцо многочленов; векторное пространство многочленов; векторное пространство свободных векторов в геометрическом пространстве; векторы в n – мерном арифметическом пространстве. Из понятий векторного пространства и линейного отображения одного векторного пространства в другое проистекают понятия матриц, определителей и системы линейных уравнений. Отдельной главой рассмотрено приведение матриц, путем замены базиса к более простой форме. Сравнительно подробно, это демонстрируется для приведения квадратной матрицы к диагональному виду, а квадратичной формы к каноническому виду.