М.: Изд-во Моск. ун-та, 2009. — 184 с. — ISBN 978-5-211-05557-5.
В настоящей монографии впервые систематически исследуются обратные
задачи Штурма-Лиувилля с нераспадающимися краевыми условиями. В
работе сведены воедино, обобщены и дополнены результаты, полученные
и опубликованные авторами в журнальных статьях.
Книга состоит из трех глав. В первой главе доказываются самые ранние теоремы о единственности решений обратных задач Штурма-Лиувилля с нераспадающимися краевыми условиями, при доказательстве которых был использован метод отображений пространств решений.
Во второй главе приводятся теоремы авторов о единственности, разрешимости и устойчивости решений для задачи Штурма-Лиувилля с нераспадающимися краевыми условиями, а также для пучка дифференциальных операторов. Приводятся также соответствующие примеры и контрпримеры. В отличие от первой части здесь основным методом решения обратных задач выступает метод вспомогательных задач, а не метод отображении пространств решений.
В третьей главе приводятся результаты восстановления краевых условий задачи Штурма-Лиувилля с известным дифференциальным уравнением.
Книга состоит из трех глав. В первой главе доказываются самые ранние теоремы о единственности решений обратных задач Штурма-Лиувилля с нераспадающимися краевыми условиями, при доказательстве которых был использован метод отображений пространств решений.
Во второй главе приводятся теоремы авторов о единственности, разрешимости и устойчивости решений для задачи Штурма-Лиувилля с нераспадающимися краевыми условиями, а также для пучка дифференциальных операторов. Приводятся также соответствующие примеры и контрпримеры. В отличие от первой части здесь основным методом решения обратных задач выступает метод вспомогательных задач, а не метод отображении пространств решений.
В третьей главе приводятся результаты восстановления краевых условий задачи Штурма-Лиувилля с известным дифференциальным уравнением.