Rohde & Schwarz, 2001. - 221 pages.
One of the most frequent measurement tasks in radiocommunications is the examination of signals in the frequency domain. Spectrum analyzers required for this purpose are therefore among the most versatile and widely used RF measuring instruments. Covering frequency ranges of up to 40 GHz and beyond, they are used in practically all applications of wireless and wired communication in development, production, installation and maintenance efforts. With the growth of mobile communications, parameters such as displayed average noise level, dynamic range and frequency range, and other exacting requirements regarding functionality and measurement speed come to the fore.
One of the most frequent measurement tasks in radiocommunications is the examination of signals in the frequency domain. Spectrum analyzers required for this purpose are therefore among the most versatile and widely used RF measuring instruments. Covering frequency ranges of up to 40 GHz and beyond, they are used in practically all applications of wireless and wired communication in development, production, installation and maintenance efforts. With the growth of mobile communications, parameters such as displayed average noise level, dynamic range and frequency range, and other exacting requirements regarding functionality and measurement speed come to the fore.