Конспективный материал к лекциям. Иркутский государственный
технический университет.
2006г.
Введение.
Определения графов.
История теории графов.
Основное определение.
Виды графов.
Изоморфизм графов.
Элементы графов.
Операции над графами.
Представление графов в ЭВМ.
Теорема Менгера.
Теорема Холла.
Потоки в сетях.
Теорема Форда и Фалкерсона.
Алгоритм нахождения максимального потока.
Связность в орграфах.
Кратчайшие пути.
Алгоритм Флойда.
Алгоритм Дейкстры.
Деревья.
Свободные деревья.
Основные свойства деревьев.
Ориентированные, упорядоченные и бинарные деревья.
Представление деревьев в ЭВМ.
Алгоритм симметричного обхода бинарного дерева.
Деревья сортировки.
Алгоритм бинарного (двоичного) поиска.
Алгоритм поиска в дереве сортировки.
Алгоритм вставки в дерево сортировки.
Алгоритм удаления из дерева сортировки.
Вспомогательные алгоритмы для дерева сортировки.
Выровненные деревья.
Сбалансированные деревья.
Кратчайший остов.
Схема алгоритма построения кратчайшего остова.
Алгоритм Краскала.
Циклы.
Фундаментальные циклы и разрезы.
Эйлеровы циклы.
Эйлеровы графы.
Алгоритм построения эйлерова цикла в эйлеровом графе.
Гамильтоновы циклы.
Гамильтоновы графы.
Задача коммивояжера.
Независимость и покрытия.
Построение независимых множеств вершин.
Постановка задачи отыскания наибольшего независимого множества вершин
Поиск с возвратами
Улучшенный перебор
Алгоритм построения максимальных независимых множеств вершин
Доминирующие множества
Задача о наименьшем покрытии
Эквивалентные формулировки ЗНП
Связь ЗНП с другими задачами
Раскраска графов
Хроматическое число
Планарност
Теорема о пяти красках
Алгоритмы раскрашивания
Точный алгоритм раскрашивания
Приближенный алгоритм последовательного раскрашивания
Улучшенный алгоритм последовательного раскрашивания
2006г.
Введение.
Определения графов.
История теории графов.
Основное определение.
Виды графов.
Изоморфизм графов.
Элементы графов.
Операции над графами.
Представление графов в ЭВМ.
Теорема Менгера.
Теорема Холла.
Потоки в сетях.
Теорема Форда и Фалкерсона.
Алгоритм нахождения максимального потока.
Связность в орграфах.
Кратчайшие пути.
Алгоритм Флойда.
Алгоритм Дейкстры.
Деревья.
Свободные деревья.
Основные свойства деревьев.
Ориентированные, упорядоченные и бинарные деревья.
Представление деревьев в ЭВМ.
Алгоритм симметричного обхода бинарного дерева.
Деревья сортировки.
Алгоритм бинарного (двоичного) поиска.
Алгоритм поиска в дереве сортировки.
Алгоритм вставки в дерево сортировки.
Алгоритм удаления из дерева сортировки.
Вспомогательные алгоритмы для дерева сортировки.
Выровненные деревья.
Сбалансированные деревья.
Кратчайший остов.
Схема алгоритма построения кратчайшего остова.
Алгоритм Краскала.
Циклы.
Фундаментальные циклы и разрезы.
Эйлеровы циклы.
Эйлеровы графы.
Алгоритм построения эйлерова цикла в эйлеровом графе.
Гамильтоновы циклы.
Гамильтоновы графы.
Задача коммивояжера.
Независимость и покрытия.
Построение независимых множеств вершин.
Постановка задачи отыскания наибольшего независимого множества вершин
Поиск с возвратами
Улучшенный перебор
Алгоритм построения максимальных независимых множеств вершин
Доминирующие множества
Задача о наименьшем покрытии
Эквивалентные формулировки ЗНП
Связь ЗНП с другими задачами
Раскраска графов
Хроматическое число
Планарност
Теорема о пяти красках
Алгоритмы раскрашивания
Точный алгоритм раскрашивания
Приближенный алгоритм последовательного раскрашивания
Улучшенный алгоритм последовательного раскрашивания