• формат djvu
  • размер 3.74 МБ
  • добавлен 01 февраля 2011 г.
Mukhi S., Mukunda N. Introduction to Topology, Differential Geometry and Group Theory for Physicists
Wiley Easte Limited, 1990, 223 p. This monograph is one of a series devoted to topics in theoretical high energy physics, originating from courses given at the Schools in this subject being supported on a continuing basis by the Science and Engineering Research Council of the Department of Science and Technology, Govement of India.
The present monograph contains material from two courses covering mathematical topics which have been and continue to be of great importance and use in high energy physics-topology, differential geometry, Lie groups and algebras. Both sets of notes are reasonably self-contained, in the sense that they provide a good orientation in these subjects to the reader, but a modest degree of maturity on the part of the reader is assumed.
The material of Mukhi's notes, aimed at students with no previous exposure to any sort of "advanced mathematics", covers the basics of topology, homotopy, differentiable manifold theory, homology, cohomology and fibre bundles. Each concept is developed from scratch, and definitions and notations are made clear via examples and reasonably precise statements. The hope has been to clear the "mental block" that many young physicists seem to have towards these areas of mathematics. The relevance to actual problems in physics has been treated as secondary as compared to understanding the fundamental mathematical structures for their own sake. It is expected that in their uses in quantum field theory and general relativity the former aspect will automatically be taken care of.
The notes by Mukunda on Lie groups, Lie algebras and their representations are again meant to be an introduction to the subject, with the main focus being on the Classical Compact Simple Lie groups and Algebras. Their aim is to provide a mature reader with an orientation and a preparation to go much further on his or her own. To some extent, we have been guided by the words of Rudolf Peierls: ". . . any attempt at completeness would defeat the object of the lectures, .. , which is to illustrate, and to entertain. . ". Apart from initial sections on basic group theory, representation theory, Lie groups and algebras, some idea of the problem of classification of all Lie algebras is given. The semisimple case, and then in particular the compact situation, is dealt with in more detail. The method of Dynkin diagrams, the complete listing of all the compact simple Lie algebras, general representation theory, and finally spinor representations for both orthogonal and pseudo orthogonal groups are discussed.
Похожие разделы
  1. Академическая и специальная литература
  2. Биологические дисциплины
  3. Матметоды и моделирование в биологии
  1. Академическая и специальная литература
  2. Геологические науки и горное дело
  3. Матметоды и моделирование в горно-геологической отрасли
  1. Академическая и специальная литература
  2. Информатика и вычислительная техника
  3. Компьютерное моделирование
  1. Академическая и специальная литература
  2. Математика
  3. Высшая математика (основы)
  4. Математика для инженерных и естественнонаучных специальностей
  1. Академическая и специальная литература
  2. Математика
  3. Вычислительная математика
  1. Академическая и специальная литература
  2. Математика
  3. Математическая физика
  1. Академическая и специальная литература
  2. Машиностроение и металлообработка
  3. Конструирование и проектирование в машиностроении
  4. Матметоды и моделирование в машиностроении
  1. Академическая и специальная литература
  2. Междисциплинарные материалы
  3. Моделирование
  1. Академическая и специальная литература
  2. Наноматериалы и нанотехнологии
  3. Матметоды и моделирование в нанотехнологии
  1. Академическая и специальная литература
  2. Промышленное и гражданское строительство
  3. Матметоды и моделирование в строительстве
  1. Академическая и специальная литература
  2. Радиоэлектроника
  3. Матметоды и моделирование в радиоэлектронике
  1. Академическая и специальная литература
  2. Связь и телекоммуникации
  3. Матметоды и моделирование в связи и телекоммуникациях
  1. Академическая и специальная литература
  2. Топливно-энергетический комплекс
  3. Математические задачи энергетики
  1. Академическая и специальная литература
  2. Химия и химическая промышленность
  3. Матметоды и моделирование в химии
  1. Академическая и специальная литература
  2. Экологические дисциплины
  3. Матметоды и моделирование в экологии
Смотрите также

Baez J.C., Muniain J.P. Gauge Fields, Knots, and Gravity

  • формат djvu
  • размер 2.75 МБ
  • добавлен 03 июля 2011 г.
World Scientific Pub, 1994. - 480 Pages. From Scientific American "The book is clearly written and should be accessible to readers who have a good undergraduate preparation in mathematics or physics. Each part of the book ends with a list of references that will enable the reader to pursue the material presented in greater detail." "This book is a great introduction to many of the modern ideas of mathematical physics including differential ge...

Dunajski M. Solitons, Instantons, and Twistors

  • формат pdf
  • размер 2.11 МБ
  • добавлен 19 августа 2011 г.
Oxford University Press, 2010. - 368 Pages. Most nonlinear differential equations arising in natural sciences admit chaotic behavior and cannot be solved analytically. Integrable systems lie on the other extreme. They possess regular, stable, and well behaved solutions known as solitons and instantons. These solutions play important roles in pure and applied mathematics as well as in theoretical physics where they describe configurations topolo...

Giga Y. Surface Evolution Equations: A Level Set Approach

  • формат pdf
  • размер 4.09 МБ
  • добавлен 27 ноября 2011 г.
Birkh?user Verlag, Bаsel, 2006, 264 pages This book presents a self-contained introduction to the analytic foundation of a level set approach for various surface evolution equations including curvature flow equations. These equations are important in many applications, such as material sciences, image processing and differential geometry. The goal is to introduce a generalized notion of solutions allowing singularities, and to solve the initial...

Guillemin V., Sternberg S. Geometric Asymptotics

  • формат djvu
  • размер 4.49 МБ
  • добавлен 31 марта 2011 г.
American Mathematical Society, 1977 p. ISBN:0821816330 Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differenti...

Guillemin V., Sternberg S. Geometric Asymptotics

  • формат pdf
  • размер 30.05 МБ
  • добавлен 31 марта 2011 г.
American Mathematical Society, 1977 p. ISBN:0821816330 Symplectic geometry and the theory of Fourier integral operators are modern manifestations of themes that have occupied a central position in mathematical thought for the past three hundred years--the relations between the wave and the corpuscular theories of light. The purpose of this book is to develop these themes, and present some of the recent advances, using the language of differenti...

Rabinowitz P.H. Minimax Methods in Critical Point Theory with Applications to Differential Equations

  • формат pdf
  • размер 3.38 МБ
  • добавлен 11 декабря 2010 г.
American Mathematical Society, 1986. - 100 Pages. The book provides an introduction to minimax methods in critical point theory and shows their use in existence questions for nonlinear differential equations. An expanded version of the author's 1984 CBMS lectures, this volume is the first monograph devoted solely to these topics. Among the abstract questions considered are the following: the mountain pass and saddle point theorems, multiple crit...

Reed M., Simon B. Methods of Modern Mathematical Physics. Volume 2: Fourier Analysis, Self-Adjointness

  • формат djvu
  • размер 7.1 МБ
  • добавлен 26 июня 2011 г.
Academic Press, 1975. - 361 pages. This volume will serve several purposes: to provide an introduction for graduate students not previously acquainted with the material, to serve as a reference for mathematical physicists already working in the field, and to provide an introduction to various advanced topics which are difficult to understand in the literature. Not all the techniques and application are treated in the same depth. In general, we g...

Stone M., Goldbart P. Mathematics for Physics: A Guided Tour for Graduate Students

  • формат pdf
  • размер 5.47 МБ
  • добавлен 20 января 2011 г.
Cambridge University Press, 2009. - 820 pages. An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics - differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, in...

Taylor M.E. Partial Differential Equations III: Nonlinear Equations

  • формат pdf
  • размер 3.72 МБ
  • добавлен 14 января 2011 г.
Springer, 2010. - 715 Pages. The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear d...

Taylor M.E. Partial Differential Equations: Basic Theory

  • формат djvu
  • размер 5.69 МБ
  • добавлен 09 января 2011 г.
Springer, 1999. - 563 pages. This text provides an introduction to the theory of partial differential equations. It introduces basic examples of partial differential equations, arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, including particularly Fourier analysis, distribution theory, and Sobolev spaces. These tools are applied to the treatment of basic probl...