На английском языке. Статья опубликована в ж. Renewable Energy. –
2010. – 35 (12). – P. 2656–2665.
Abstract
This paper presents the findings of a theoretical analysis and experimental verification on the storing of heat excess in soil and liquid accumulators located in a foil tunnel. There was positive verification of the formulated macroscopic heat exchange model in both accumulators (maximum error 81%) and the quantity of heat stored in them was defined. During the experiments, under existing weather conditions, the amount of stored heat stood between 6 MJ and 45 MJ in the liquid accumulator and between 9 MJ and 130 MJ in the soil accumulator. The quantity of heat supplied from the accumulator to the interior of the tunnel during discharging, which stood between 0.6 MJ and 46 MJ, was also described. The COP was determined for the tested system both for the accumulator charging process and the discharging of the soil accumulator. Furthermore, the quantity of heat used for heating up heat originating from the discharging of the accumulator whilst heating the tunnel for favorable and unfavorable surrounding climate conditions was determined.
Abstract
This paper presents the findings of a theoretical analysis and experimental verification on the storing of heat excess in soil and liquid accumulators located in a foil tunnel. There was positive verification of the formulated macroscopic heat exchange model in both accumulators (maximum error 81%) and the quantity of heat stored in them was defined. During the experiments, under existing weather conditions, the amount of stored heat stood between 6 MJ and 45 MJ in the liquid accumulator and between 9 MJ and 130 MJ in the soil accumulator. The quantity of heat supplied from the accumulator to the interior of the tunnel during discharging, which stood between 0.6 MJ and 46 MJ, was also described. The COP was determined for the tested system both for the accumulator charging process and the discharging of the soil accumulator. Furthermore, the quantity of heat used for heating up heat originating from the discharging of the accumulator whilst heating the tunnel for favorable and unfavorable surrounding climate conditions was determined.