Дисертация
  • формат doc
  • размер 1,14 МБ
  • добавлен 17 февраля 2017 г.
Капуткина Н.Е. Поведение квантово-размерных наноструктур в электрическом и магнитном полях
Автореферат диссертации на соискание ученой степени доктора физико-математических наук: 01.04.07 – Физика конденсированного состояния. — Национальный исследовательский технологический университет. — Москва, 2010. — 52 с.

Целью настоящей работы были теоретический анализ и компьютерное моделирование влияния внешнего магнитного поля, размерных параметров, характеристик структуры, удерживающего потенциала и внутреннего взаимодействия частиц на энергетические характеристики (оптические и электронные свойства) квантовых систем пониженной размерности
Научная новизна
На основании теоретического анализа и компьютерного моделирования квантовых систем пониженной размерности, подвергаемых воздействию электромагнитных полей, определены особенности изменения свойств (электронных и оптических свойств: энергетических спектров и законов дисперсии, волновых функций, локализации) этих систем, обусловленные величиной полей и структурой системы. Определены границы применимости различных приближений и методов расчета параметров энергетических спектров электронов, экситонов и экситонных поляритонов в квантовых точках и квантовых ямах.
Определены спектры малоэлектронных (двухэлектронных) и многоэлектронных квантовых точек с учетом межэлектронного взаимодействия, в том числе и во внешнем магнитном поле. Показано, что влияние магнитного поля приводит к увеличению эффективной крутизны удерживающего потенциала в магнитном поле (новый управляющий параметр – эффективная крутизна удерживающего потенциала, – увеличивающийся и с ростом поля и с ростом параметра конфайнмента).
На основании расчетов энергетических спектров и волновых функций квантовых точек определены условия квантовой "кристаллизации" и выявлено, что управляющими параметрами для энергетического спектра являются крутизна удерживающего потенциала и величина магнитного поля, а для волновых функций - только эффективная крутизна удерживающего потенциала в магнитном поле. Обнаружена возможность немонотонного влияния магнитного поля на квантовую "кристаллизацию" электронного кластера в квантовой точке, связанную с конкуренцией двух механизмов - уменьшения размытия волновых функций и сжатия всей системы.
Определены спектры энергий и волновых функций квазидвумерных и трехмерных экситонов в квантовых точках и в квантовых ямах в магнитном поле.
Различными методами определены энергии основного состояния, энергетические спектры, волновые функции "вертикально" и "горизонтально" расположенной пары взаимодействующих квантовых точек ("молекулы" из квантовых точек) и проанализирована эволюция спектра системы с ростом крутизны удерживающего потенциала и/или величины магнитного поля и/или расстояния между центрами квантовых точек от двухэлектронной квантовой точки через систему двух параболических квантовых ям с сильно взаимодействующими (в "горизонтальной молекуле" –коллективизированными) электронами к двум отдельным квантовым точкам.
Исследована спиновая перестройка основного состояния в «молекуле» из синглетного состояния в триплетное. Доказано, что с ростом магнитного поля растет эффективная крутизна удерживающего потенциала, что приводит к локализации электронов, уменьшает вклад кулоновского взаимодействия электронов при росте величины вклада энергии электронов в потенциальных ямах (энергии основного состояния изолированной КТ). Продемонстрирована возможность управления основным состоянием и спектрами горизонтальных и вертикальных связанных КТ с помощью управляющих электродов и внешнего магнитного поля, а также конструкции «молекулы» (расстояния между КТ). Доказано существование спиновой перестройки в системе.
Рассмотрены пространственно-разделенные двумерные, квазидвумерные и трехмерные экситоны с носителями в связанных квантовых ямах во внешнем поперечном магнитном поле для широкого диапазона величины магнитного поля B и межямных расстояний d. Определены энергетические спектры, волновые функции и законы дисперсии, проведен анализ их зависимостей от магнитного поля в широком диапазоне магнитных полей.
Изучена зависимость эффективной массы магнитоэкситона для основного и возбужденных состояний от магнитного поля, толщин слоев носителей заряда и межслоевого расстояния. В возбужденных состояниях с квантовыми числами m 0 зависимость от магнитного поля и межслоевого расстояния эффективной массы магнитоэкситона (для центрального минимума) оказывается немонотонной.
Исследована возможность ионизации пространственно-разделенного экситона в магнитном поле, определены условия, необходимые для существования «магнитного» минимума эффективного потенциала. Определен критерий захвата экситона в «магнитный» минимум.
Найдены энергетические спектры и волновые функции для пространственно- разделенного двумерного экситона с носителями в связанных квантовых точках в магнитном поле произвольной величины.
Исследовано влияние магнитного поля на спектры и законы дисперсии в связанных квантовых точках и квантовых ямах и на экситонные поляритоны в связанных квантовых ямах и квантовых точках в оптическом микрорезонаторе.
Определены энергетические спектры, волновые функции и законы дисперсии пространственно-разделенного квазидвумерного и трехмерного экситона с носителями в связанных квантовых ямах. Проанализирована их зависимость от магнитного поля в широком диапазоне.
Рассмотрено взаимодействие двумерных и квазидвумерных экситонов с фотонами и возможное образование экситонных поляритонов для структур с одиночными и двойными квантовыми ямами, встроенными в микрорезонатор. Рассмотрен переход Костерлица-Таулеса в когерентное состояние для системы взаимодействующих экситонных поляритонов в оптической микрополости.
Показано, что приложение магнитного поля позволяет управлять спектром прямых и непрямых экситонов в квантовых ямах, а также величиной поляритонного эффекта для заданной структуры и свойствами образующихся поляритонов. Рассмотрены условия сильного поляритонного резонанса, а также оценена ширина щели. Для возбужденных уровней эффективная масса непрямого магнитоэкситона может быть отрицательной в области малых импульсов при определенных условиях и, таким образом, возможен немонотонный закон дисперсии поляритонов для возбужденного состояния экситонного поляритона. Как аналитически, так и численными методами оценена возможность управления поляритонным резонансом, величиной экситон-поляритонного расщепления Раби и законами дисперсии образующихся поляритонов путем приложения внешнего магнитного поля. Исследованы эффекты спонтанной когерентности при низких температурах. Для определенного диапазона параметров зависимость критической температуры от магнитного поля может быть немонотонной.
Рассмотрены апериодические последовательности, созданные из квантовых точек, расположенных в соответствии с различными закономерностями (последовательности Фибоначчи, Тью-Морзе, Кантора, двупериодические). Определены спектры одночастичных и двухчастичных возбуждений в таких системах (для широкого диапазона управляющих параметров: крутизны удерживающего потенциала, расстояния между КТ, а также внешних электрического и магнитного полей). Показана возможность управления свойствами подобных наноструктур (энергетическими спектрами, транспортом, локализацией) путем наложения внешнего магнитного поля и внешнего электрического поля. Изучены эффекты резонансного туннелирования и эффекты локализации одно- и двухчастичных возбуждений. Показано, что, в отличие от периодических последовательностей, для апериодических последовательностей локализация происходит при конечных возмущениях (для периодических последовательностей – при сколь угодно малых возмущениях).
Рассмотрено взаимодействие электромагнитного излучения с материалами, резонансно взаимодействующими с электромагнитным излучением, в частности, с материалами, содержащими наночастицы нескольких классов, различающихся по составу и размерам. Показана возможность изменения формы импульса при отражении электромагнитного излучения подобными материалами. Оценено влияние точности подбора радиофизических параметров материала на характеристики отраженного импульса.
Практическая значимость работы
С использованием микроскопического подхода решены следующие задачи: рассчитаны отдельные квантовые точки и системы квантовых точек - "горизонтальные" и "вертикальные" "молекулы", апериодические последовательности квантовых точек, рассчитаны энергетические спектры и электронная корреляция вплоть до установления режима сильной корреляции электронов - квантовая "кристаллизация" электронных кластеров в квантовых точках в магнитном поле; рассмотрены двумерные экситоны с пространственно-разделенными электронами и дырками в связанных квантовых ямах и в связанных квантовых точках в магнитном поле, рассмотрена также задача о пространственно-разделенных электроне и заряженной примеси в связанных квантовых ямах в магнитном поле. Задачи решены для широкого диапазона характерных параметров - крутизны удерживающего потенциала, расстояния между КТ или КЯ, магнитного поля. Показана возможность управления свойствами наноструктур (энергетическими спектрами, транспортом, локализацией) путем наложения внешнего магнитного поля и внешнего электрического поля.
Это может служить основой для решения аналогичных физических задач и для создания устройств, работающих на существенно квантовых эффектах – лазеров на связанных КЯ и связанных КТ, элементной базы наноэлектроники, элементов памяти, кьюбитов и логических вентилей для квантового компьютера, волноводов и др.
Разработаны принципы создания материала, позволяющего управляемо изменять форму импульса при отражении, что перспективно для применения в функциональной электронике и радиолокации.