Автореферат диссертации на соискание ученой степени доктора
технических наук: 05.14.14 – "Тепловые электрические станции, их
энергетические системы и агрегаты. — Всероссийский дважды ордена
Трудового Красного Знамени теплотехнический
научно-исследовательский институт. — Москва, 2010. — 78 с.
Цель работы. Увеличение срока службы деталей
длительно эксплуатируемого энергооборудования за счет повышения
достоверности и эффективности оценок их ресурсных характеристик
путем создания научных основ и методологии определения остаточной
долговечности с учетом количественного анализа кинетики развития
макроповрежденности металла. Реализация данной цели служит
одновременно основой для повышения надёжности и без-опасности
теплосилового оборудования, эксплуатируемого за пределами
нормативных сроков службы.
Научная новизна
Предложены варианты физико-механических моделей развития коррозионно-усталостного разрушения в металле по механизмам изменения свободной энергии активации, анодного растворения и катодного (водородного) охрупчивания металла, обосновывающие качественно основные закономерности влияния параметров циклического нагружения и характеристик среды на кинетику процесса. Разработана феноменологическая модель развития трещины при ползучести, описывающая кинетику разрушения степенной зависимостью от КИН, коэффициенты которой являются функциями характеристик длительной прочности и ползучести материала. Достоверность и эффективность разработанных моделей подтверждены результатами экспериментов.
Разработаны испытательные устройства и экспериментальные методики исследования характеристик трещиностойкости материалов при механическом нагружении и воздействии жидкой среды в различном её состоянии и с учётом локальных электрохимических параметров в полости трещины.
Экспериментально подтверждена возможность описания скорости роста усталостных трещин в металле единой кинетической зависимостью типа уравнения Пэриса, инвариантной по отношению к асимметрии нагружения и температуре в интервале изменения последней 20 … 300 °С.
Установлены закономерности влияния факторов циклического нагружения (частоты, асимметрии) и характеристик водной среды (химсостава, скорости водообмена, температуры), в том числе электрохимических параметров в полости трещины, на коррозионно-усталостную трещиностойкость углеродистой, низколегированной и аустенитной стали. Выявлены основные тенденции влияния состояния металла на характеристики усталостной и коррозионно-усталостной трещиностойкости указанных сталей.
Изучены и обобщены особенности кинетики электрохимических параметров в полости стационарной и развивающейся коррозионной трещины, позволившие в комплексе с результатами проведённых исследований и в контексте предложенных моделей дать системный анализ и обосновать механизмы акселерации усталостных трещин в перлитной и аустенитной стали при воздействии на металл водной среды.
Обоснована возможность описания скорости роста трещин (СРТ) ползучести с помощью параметра модифицированного коэффициента интенсивности напряжений (КИН), учитывающего характер напряженного состояния в расчётном сечении, а также температуру и наработку металла. Показано, что диаграмма роста трещин ползучести может быть аппроксимирована с помощью модифицированного КИН единой кинетической зависимостью для различных типов образца и температуры металла в диапазоне её изменения ± 20…25 °С.
Впервые для количественного анализа долговечности элементов оборудования на стадии развития дефектов получены базовые диаграммы циклической и коррозионно-циклической трещиностойкости сталей энергооборудования, учитывающие влияние на кинетику разрушения широкого спектра эксплуатационных факторов. Определены кинетические диаграммы трещиностойкости при ползучести теплоустойчивых (паропроводных и роторных) сталей для рабочего диапазона температур.
Разработан и внедрен в практику диагностических (экспертных) обследований инженерный метод расчёта долговечности и несущей способности элементов оборудования на стадии развития трещиноподобных дефектов для различных вариантов нагружения и сопутствующих эксплуатационных факторов.
Практическая ценность
Создана база для количественных инженерных расчётов долговечности и несущей способности длительно эксплуатируемого или имеющего повреждения оборудования, являющаяся основой для расчётных оценок ресурсных характеристик ответственных элементов при продлении сроков их службы или назначении регламента контроля, а также для установления допустимых размеров дефектов при назначении критериев и норм качества металла.
Разработаны методы испытания материалов на циклическую трещиностойкость в условиях воздействия жидких коррозионных сред, вошедшие составной частью в нормативно-методический документ (Рекомендации) Госстандарта СССР по теме "Методы механических испытаний металлов".
С использованием результатов работы выпущены отраслевые нормативно-технические документы, регламентирующие: порядок контроля и продления сроков службы тепломеханического оборудования ТЭС после отработки нормативного ресурса; нормы и критерии оценки качества металла (и сварных соединений) по результатам контроля; требования к технологиям восстановительного ремонта.
Обосновано продление сроков службы десятков единиц парка тепломеханического оборудования на электростанциях России и ближнего зарубежья, в том числе сосудов давления, питательных трубопроводов, паропроводов, элементов котлов и др. По индивидуальным техническим решениям, базирующимся на оценках, выполненных с использованием результатов работы, обоснованы сроки временной эксплуатации и объёмы замен повреждённых элементов энергооборудования.
Научная новизна
Предложены варианты физико-механических моделей развития коррозионно-усталостного разрушения в металле по механизмам изменения свободной энергии активации, анодного растворения и катодного (водородного) охрупчивания металла, обосновывающие качественно основные закономерности влияния параметров циклического нагружения и характеристик среды на кинетику процесса. Разработана феноменологическая модель развития трещины при ползучести, описывающая кинетику разрушения степенной зависимостью от КИН, коэффициенты которой являются функциями характеристик длительной прочности и ползучести материала. Достоверность и эффективность разработанных моделей подтверждены результатами экспериментов.
Разработаны испытательные устройства и экспериментальные методики исследования характеристик трещиностойкости материалов при механическом нагружении и воздействии жидкой среды в различном её состоянии и с учётом локальных электрохимических параметров в полости трещины.
Экспериментально подтверждена возможность описания скорости роста усталостных трещин в металле единой кинетической зависимостью типа уравнения Пэриса, инвариантной по отношению к асимметрии нагружения и температуре в интервале изменения последней 20 … 300 °С.
Установлены закономерности влияния факторов циклического нагружения (частоты, асимметрии) и характеристик водной среды (химсостава, скорости водообмена, температуры), в том числе электрохимических параметров в полости трещины, на коррозионно-усталостную трещиностойкость углеродистой, низколегированной и аустенитной стали. Выявлены основные тенденции влияния состояния металла на характеристики усталостной и коррозионно-усталостной трещиностойкости указанных сталей.
Изучены и обобщены особенности кинетики электрохимических параметров в полости стационарной и развивающейся коррозионной трещины, позволившие в комплексе с результатами проведённых исследований и в контексте предложенных моделей дать системный анализ и обосновать механизмы акселерации усталостных трещин в перлитной и аустенитной стали при воздействии на металл водной среды.
Обоснована возможность описания скорости роста трещин (СРТ) ползучести с помощью параметра модифицированного коэффициента интенсивности напряжений (КИН), учитывающего характер напряженного состояния в расчётном сечении, а также температуру и наработку металла. Показано, что диаграмма роста трещин ползучести может быть аппроксимирована с помощью модифицированного КИН единой кинетической зависимостью для различных типов образца и температуры металла в диапазоне её изменения ± 20…25 °С.
Впервые для количественного анализа долговечности элементов оборудования на стадии развития дефектов получены базовые диаграммы циклической и коррозионно-циклической трещиностойкости сталей энергооборудования, учитывающие влияние на кинетику разрушения широкого спектра эксплуатационных факторов. Определены кинетические диаграммы трещиностойкости при ползучести теплоустойчивых (паропроводных и роторных) сталей для рабочего диапазона температур.
Разработан и внедрен в практику диагностических (экспертных) обследований инженерный метод расчёта долговечности и несущей способности элементов оборудования на стадии развития трещиноподобных дефектов для различных вариантов нагружения и сопутствующих эксплуатационных факторов.
Практическая ценность
Создана база для количественных инженерных расчётов долговечности и несущей способности длительно эксплуатируемого или имеющего повреждения оборудования, являющаяся основой для расчётных оценок ресурсных характеристик ответственных элементов при продлении сроков их службы или назначении регламента контроля, а также для установления допустимых размеров дефектов при назначении критериев и норм качества металла.
Разработаны методы испытания материалов на циклическую трещиностойкость в условиях воздействия жидких коррозионных сред, вошедшие составной частью в нормативно-методический документ (Рекомендации) Госстандарта СССР по теме "Методы механических испытаний металлов".
С использованием результатов работы выпущены отраслевые нормативно-технические документы, регламентирующие: порядок контроля и продления сроков службы тепломеханического оборудования ТЭС после отработки нормативного ресурса; нормы и критерии оценки качества металла (и сварных соединений) по результатам контроля; требования к технологиям восстановительного ремонта.
Обосновано продление сроков службы десятков единиц парка тепломеханического оборудования на электростанциях России и ближнего зарубежья, в том числе сосудов давления, питательных трубопроводов, паропроводов, элементов котлов и др. По индивидуальным техническим решениям, базирующимся на оценках, выполненных с использованием результатов работы, обоснованы сроки временной эксплуатации и объёмы замен повреждённых элементов энергооборудования.