Андреев В.К., Гапоненко Ю.А., Гончарова О.Н., Пухначев В.В.
М.: ФИЗМАТЛИТ, 2008. — 368 с. — ISBN 978-5-9221-0905-5. Монография посвящена математическим вопросам течений жидких сред в неклассических моделях конвекции. Выведены граничные условия на поверхности раздела и свободной границе. Исследована иерархия моделей конвекции в замкнутых объемах. Рассмотрены возможные постановки начально-краевых задач для модели изотермически несжимаемой жидкости с непостоянными коэффициентами переноса. Изучены групповые свойства уравнений различных моделей конвекции и найдены широкие классы точных решений. Излагаются результаты численных исследований конвективных течений в слабых силовых полях. Определены условия возникновения конвекции и изучена устойчивость стационарных течений.
Книга будет полезной научным работникам, преподавателям, магистрам и аспирантам вузов, занимающимся конвективными течениями, дифференциальными уравнениями гидродинамики и вопросами устойчивости.
М.: ФИЗМАТЛИТ, 2008. — 368 с. — ISBN 978-5-9221-0905-5. Монография посвящена математическим вопросам течений жидких сред в неклассических моделях конвекции. Выведены граничные условия на поверхности раздела и свободной границе. Исследована иерархия моделей конвекции в замкнутых объемах. Рассмотрены возможные постановки начально-краевых задач для модели изотермически несжимаемой жидкости с непостоянными коэффициентами переноса. Изучены групповые свойства уравнений различных моделей конвекции и найдены широкие классы точных решений. Излагаются результаты численных исследований конвективных течений в слабых силовых полях. Определены условия возникновения конвекции и изучена устойчивость стационарных течений.
Книга будет полезной научным работникам, преподавателям, магистрам и аспирантам вузов, занимающимся конвективными течениями, дифференциальными уравнениями гидродинамики и вопросами устойчивости.