Учебное пособие. — М.: МИИТ, 2010. — 134 с.
В первой главе описано преобразование связывающее решения
квазилинейных обыкновенных дифференциальных уравнений с решениями
полулинейных уравнений. С помощью этого преобразования вычислены
асимптотические представления решения квазилинейного ОДУ
возникающего из важных в приложениях уравнений. Во второй главе
проводится изложение нового метода нефиксированнной конструктивной
замены переменных. Разобрано много примеров, связанных с именными
уравнениями. Описана новая связь собственных чисел сопутствующей
матрицы с характером поведения решения. Это имеет отношение к
изучению устойчивости решений нелинейных уравнений. Предложена
классификация решений по собственным числам сопутствующей матрицы.
Пособие содержит необходимые сведения из различных курсов
математики в виде повторения пройденного ранее материала.
Связь между квазилинейными и полулинейными ОДУ с помощью
локализующего отображения.
Исследование эталонных уравнений. Локализующее отображение.
Пример применения локализующего отображения.
Исследование уравнений типа Колмогорова — Петровского — Пискунова — Фишера.
Исследование уравнений типа Зельдовича.
Асимптотические оценки для квазилинейных параболических уравнений.
Метод нефиксированной конструктивной замены переменных.
Уравнения с частными производными как система функциональных линейных алгебраических уравнения.
Пример решения уравнения Зельдовича — Компанейца.
Анализ условий разрешимости и решения в частных случаях нелинейных параболических уравнений.
Вывод новой системы для уравнений ФХНС, Зельдовича и КППФ.
Решение полулинейного уравнения.
Модифицированное уравнение Колмогорова — Петровского — Пискунова — Фишера.
Уравнение Фитц Хью — Нагумо — Семенова.
Связь собственных чисел с характером эволюции решений нелинейных уравнений.
Основные формулы для расчета трехмерного случая.
Выдержка из отзыва профессора М.В. Карасева.
Исследование эталонных уравнений. Локализующее отображение.
Пример применения локализующего отображения.
Исследование уравнений типа Колмогорова — Петровского — Пискунова — Фишера.
Исследование уравнений типа Зельдовича.
Асимптотические оценки для квазилинейных параболических уравнений.
Метод нефиксированной конструктивной замены переменных.
Уравнения с частными производными как система функциональных линейных алгебраических уравнения.
Пример решения уравнения Зельдовича — Компанейца.
Анализ условий разрешимости и решения в частных случаях нелинейных параболических уравнений.
Вывод новой системы для уравнений ФХНС, Зельдовича и КППФ.
Решение полулинейного уравнения.
Модифицированное уравнение Колмогорова — Петровского — Пискунова — Фишера.
Уравнение Фитц Хью — Нагумо — Семенова.
Связь собственных чисел с характером эволюции решений нелинейных уравнений.
Основные формулы для расчета трехмерного случая.
Выдержка из отзыва профессора М.В. Карасева.