Iris Pattern Classification Combining
Orientation Recognition 15
In future work, we will test individual recognition with many more samples of iris patterns.
We will also implement the R-SAN net as the security system of the mobile phone, and
optimize the orientation and iris pattern recognition algorithms to reduce the computational
cost.
8. References
Daugman, J. (1993). High confidence visual recognition of persons by a test of statistical
independence. IEEE Trans. Pattern Anal. Mach. Intell., Vol. 15, No. 11, pp. 1148-1161.
Boles, W. & Boashash, B. (1998). A human identification technique using images of the iris and
wavelet transform. IEEE Trans. Signal Process., Vol. 46, No. 4, pp. 1185-1188.
Sanchez-Avila, C. & Sanchez-Reillo, R. (2005). Two different approaches for iris recognition
using Gabor filters and multiscale zero-crossig representation. Pattern Recognition,
Vol. 38, No. 2, pp. 231-240.
Wildes, R. P. (1997). Iris recognition: an emerging biometric technology. Proc. IEEE,Vol.85,
No. 9, pp. 1348-1363.
Ma, L.; Tan, T.; Wang, Y. & Zhang, D. (2003). Personal identification based on iris texture
analysis. IEEE Trans. Pattern Anal. Mach. Intell., Vol. 25, No. 12, pp. 1519-1533.
Ma, L.; Tan, T.; Wang, Y. & Zhang, D. (2004). Local intensity variation analysis for iris
recognition. Pattern Recognition, Vol. 37, No. 6, pp. 1287-1298.
Ma, L.; Tan, T.; Wang, Y. & Zhang, D. (2004). Efficient iris recognition by characterizing key
local variations. IEEE Trans. Image Process., Vol. 13, No. 6, pp. 739-750.
Center for Biometrics and Security Research (2005). CASIA-IrisV4, 09.04.2011, Available from
http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp
Sun, Z.; Tan, T. & Qiu, X. (2006). Graph matching iris image blocks with local binary pattern,
In: Advances in Biometrics, LNCS 3832, pp. 366-372.
Wang, F.; Yao, X. & Han, J. (2007). Minimax probability machine multialgorithmic fusion for
iris recognition. Information Technology Journal, Vol. 6, No. 7, pp. 1043-1049.
Nakamura, K.; Miyamoto, S. & Morisada, K. (1998). Characteristics of spatial spreading
associative neural network in simultaneous recognition of object orientation and
shape. IEICE Trans. Inf. & Syst., Vol. J81-D-II, No. 6, pp. 1194-1204.
Yoshikawa, T. & Nakamura, K. (2000). Evaluation of recognition ability and inside parameters
for spreading associative neural network. IEICE Trans. Inf. & Syst., Vol. J83-D-II, No.
5, pp. 1332-1343.
Matsumoto, T.; Hirabayashi, M. & Sato, K. (2004). A vulnerability evaluation of iris matching
(Part 3). Proc. The 2004 Symposium on Cryptography and Information Security (SCIS
2004), pp. 701-706.
Tachibana, M. (2006). Injustice detection system for iris recognition. Jpn. Kokai Tokkyo Koho,No.
JP2006-85226 A.
Tsukahara, S. (2006). Iris recognition device. Jpn. Kokai Tokkyo Koho, No. JP2006-136450 A.
Oda, T. (2006). Iris code generation system and iris recognition system. Jpn. Kokai Tokkyo Koho,
No. JP2000-33080 A.
Kobayashi, H.; Takano, H. & Nakamura, K. (2005). Real-time iris recognition system not
influenced by ambient light change using a rotation spreading neural network. IEICE
Technical Report, No. NC2004-163, pp. 155-160.
Kanematsu, M.; Takano, H. & Nakamura, K. (2007). Highly reliable liveness detection method
for iris recognition. Proc. SICE 2007, pp. 361-364.
217
Iris Pattern Classification Combining Orientation Recognition