10-4 Industrial Communication Systems
Figure.10.3.compares.dierent.energy.sources.for.ultralow-power.devices.from.the.viewpoint.of.
their.energy.density,.which.denes.the.amount.of.energy.that.can.be.obtained.from.an.element.of.a.
comparable.size.of.one.cubic.or.square.(for.at.elements).centimeter..e.displayed.energy.density.
presents.averaged.values.for.the.rst.year.of.operation.based.on.published.results..e.energy.capac-
ity
.of.batteries.and.fuel.cells.falls.with.the.consumption.of.resources..e.comparison.shows.that.the.
energy.densities.of.batteries.and.energy.harvesting.have.the.same.dimension,.implying.that.energy-
harvesting
.modules.are.dicult.to.miniaturize.further..is.emphasizes.the.necessity.for.designing.
ultralow-power.wireless.devices.that.minimize.energy.consumption.of.such.modules.
10.3 Communication Protocol approaches
Energy.eciency.is.reached.by.turning.hardware.parts.o.or.to.a.sleep mode.with.minimal.energy.con-
sumption
.as.oen.as.possible..erefore,.nodes.are.unavailable.for.processing.and.communication.tasks.
for.most.of.their.lifetime,.which.requires.specially.designed.communication.protocols.and.applications..
is.principle.is.commonly.known.as.duty-cycling,.while.the.duty-cycle.is.dened.as.the.fraction.of.time.
the.node.is.not.in.sleep.mode..e.duty-cycle.should.be.as.low.as.possible.for.ultralow-power.nodes..
Nevertheless,.certain.communication.and.application.performance.parameters.need.to.be.assured.like.
transmission.delay.or.sampling.accuracy..Hence,.communication.and.application.layer.requirements.
and.approaches.need.to.be.harmonized.to.eciently.use.wake-ups.
Communication
.aspects.such.as.medium.access.control.(MAC),.routing,.and.topology.control.have.
strong.inuence.on.the.duty-cycle.and.should.be.selected.adequately..Figure.10.4.illustrates.three.exam-
ple
.scenarios.that.result.in.adequate.combinations.of.approaches.to.be.discussed.in.the.following.para-
graphs.
.e.following.design.questions.are.relevant:.Does.the.network.consist.of.a.xed.deployment.of.
nodes.or.mobile.nodes?.How.large.is.the.area.to.cover?.Is.redundancy.needed.for.functional.safety?.Is.
the.network.used.only.for.data.gathering.or.additionally.for.bidirectional.communication.(like.decen-
tralized
.control.with.actuators)?
For
.a.xed.deployment.covering.a.small.area,.the.simplest.and.most.energy-ecient.solution.is.a.
single-hop.star.architecture.with.a.hub.or.coordinator.that.has.a.wired.energy.supply.and.is.always.on..
is.permits.the.usage.of.simple.CSMA.protocols.for.the.sensor.nodes.that.can.wake-up.at.any.time.
in.order.to.perform.their.task,.wait.until.the.communication.channel.is.free,.and.send.their.message.
to.the.coordinator.before.going.to.sleep.again..IEEE.802.15.4.is.one.example.that.uses.this.approach.
in. non-beacon. mode.. As. collision. detection. is. not. easily. handled. in. wireless. networks. due. to. the.
Scenario
Fixed deployment Covering a large area Many mobile
devices
Redundant nodes
Covering a small area Bi-directional
communication
Data gathering only
Single-hop Multi-hop Multi-hop
Star topology Cluster tree topology Mesh topology
CSMA MAC Rendezvous-based MAC Adaptive MAC
Flexibility
Energy efficiency
Solution
FIGURE 10.4 Dierent.scenarios.and.energy-ecient.solutions.
© 2011 by Taylor and Francis Group, LLC