352 BIBLIOGRAPHY
[10] A. Donev, J. B. Bell, A. L. Garcia, and B. J. Alder, “A hybrid particle-continuu m
method for hydrod ynamics of complex fluids”, Multiscale Modeling and Simulation,
vol. 8, No. 3, pp. 871-911, 2010.
[11] W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, “Heterogeneous multi-
scale methods: A review,” Commun. Comput. Phys., vol. 2, pp. 367–450, 2007.
[12] W. E and Z. Huang, “Matching conditions in atomistic-continuum modeling of ma-
terials,” Phys. Rev. Lett., vol. 87, no. 13, pp. 135501–135501-4, 2001.
[13] W. E and J. F. Lu, “The continuum limit and the QM-continuum approximation
of quantum mechanical models of solids,” Comm. Math. Sci., vol. 5, pp. 679–696,
2007.
[14] W. E, J. Lu and Jerry Z. Yang, “Uniform accuracy of the quasicontinuum method,”
Phys. Rev B, vol. 74, pp. 214115–214115-12, 2006.
[15] W. E and P. B. Ming, “Cauchy-Born rule and the stability of the crystalline solids:
Static problems,” Arch. Rat. Mech. Anal., vol. 183, pp. 241–297, 2007.
[16] E. G. Flekkoy, G. Wagner and J. Feder, “Hybrid model for combined particle and
continuum dynamics,” Europhys. Lett, vol. 52, pp. 271–276, 2000.
[17] A. L. Garcia, J. B. Bell, W. Y. Crutchfield and B. J. Alder “Adaptive mesh and
algorithm refinement using direct simulation Monte Carlo,” J. Comput. Phys., vol.
154, pp. 134–155, 1999.
[18] C. Garcia-Cervera, J. Lu and W. E, “A sublinear scaling algorithm for computing
the electronic structure of materials,” Comm. Math. Sci., vol. 5, no. 4, pp. 990–1026,
2007.
[19] J. Gao, “Metho ds and applications of combined quantum mechanical and molecular
mechanical potentials,” Reviews in Computational Chemistry, vol 7, K. B. Lipkowitz,
D. B. Boyd, Eds., pp. 119–185, VCH Publishers, New York, 1995.
[20] J. Gao, P. Amara, C. Alhambra, J. J. Field, “A generalized hybrid orbital (GHO)
method for the treatment of boundary atoms in combined QM/MM calculations,”
J. Phys. Chem. A, vol. 102, pp. 4714–4721, 1998.