Caruthers, J.M. and McKay, D.B., Helicase structure and mecha-
nism, Curr. Opin. Struct. Biol. 12, 123–133 (2002).
Corn, J.E. and Berger, J.M., Regulation of bacterial priming and
daughter strand synthesis through helicase–primase interac-
tions, Nucleic Acids Res. 34, 4082–4087 (2006).
Corn, J.E., Pelton, J.G., and Berger, J.M., Identitication of a DNA
primase template tracking site redefines the geometry of
primer synthesis, Nature Struct. Mol. Biol. 15, 16–169 (2008).
Davey, M.J., Jeruzalmi, D., Kuriyan, J., and O’Donnell, M., Motors
and switches: AAA
⫹
machines within the replisome, Nature
Rev. Mol. Cell Biol. 3, 1–10 (2002).
Doublié, S., Sawaya, M.R., and Ellenberger, T., An open and
closed case for all polymerases, Structure 7, R31–R35 (1999).
[Reviews the mechanisms of DNA polymerases.]
Duerstadt, K.E. and Berger, J.M., AAA⫹ ATPases in the initia-
tion of DNA replication, Crit. Rev. Biochem. Mol. Biol. 43,
163–187 (2008).
Enemark, E.J. and Joshua-Tor,L.,Mechanism of DNA translocation
in a replicative hexameric helicase, Nature 442, 270–275 (2006).
Frick, D.N. and Richardson, C.C., DNA primases, Annu. Rev.
Biochem. 70, 39–80 (2001).
Georgescu, R.E., Kim, S.-S., Yurieva, O., Kuriyan, J., Kong, X.-P.,
and O’Donnell, M., Structure of a sliding clamp on DNA, Cell
132, 43–54 (2008).
Hamdan, S.M. and Richardson, C.C., Motors, switches, and con-
tacts in the replisone, Annu. Rev. Biochem. 78, 205–243 (2009).
Jeruzalmi, D., O’Donnell, M., and Kuriyan, J., Clamp loaders and
sliding clamps, Curr. Opin. Struct. Biol. 12, 217–224 (2002).
Kaguni, J.M., DnaA: Controlling the initiation of bacterial DNA
replication and more, Annu. Rev. Microbiol. 60, 351–371 (2006).
Kamada, K., Horiuchi, T., Ohsumi, K., Shimamoto, N., and
Morikawa, K., Structure of a replication–terminator protein
complexed with DNA, Nature 383, 598–603 (1996).
Keck, J.L., Roche, D.D., Lynch,A.S., and Berger, J.M., Structure of
the RNA polymerase domain of E. coli primase, Science 287,
2482–2486 (2000); and Podobnik, M., McInerney, P., O’Don-
nell, M., and Kuriyan, J., A TOPRIM domain in the crystal
structure of the catalytic core of Escherichia coli primase con-
firms a structural link to DNA topoisomerases, J. Mol. Biol.
300, 353–362 (2000).
Kim,Y., Eom, S.H., Wang, J., Lee, D.-S., Suh, S.W., and Steitz,T.A.,
Crystal structure of Thermus aquaticus DNA polymerase, Na-
ture 376, 612–616 (1995).
Kong, X.-P., Onrust, R., O’Donnell, M., and Kuriyan, J., Three-
dimensional structure of the  subunit of E.coli DNA polymerase
III holoenzyme:A sliding DNA clamp, Cell 69, 425–437 (1992).
Kool, E.T., Active site tightness and substrate fit in DNA replica-
tion, Annu. Rev. Biochem. 71, 191–219 (2002); and Hydrogen-
bonding, base stacking, and steric effects in DNA replication,
Annu. Rev. Biophys. Biomol. Struct. 30, 1–2 (2001).
Korolev, S., Hsieh, J., Gauss, G.H., Lohman, T.M., and Waksman,
G., Major domain swiveling revealed by the crystal structures
of complexes of E. coli Rep helices bound to single-stranded
DNA and ADP, Cell 90, 635–647 (1997).
Kunkel, T.A. and Bebenek, K., DNA replication fidelity, Annu.
Rev. Biochem. 69, 497–529 (2000).
Lamers, M.H., Georgescu, R.E., Lee, S.-G., O’Donnell, M., and
Kuriyan, J., Crystal structure of the catalytic ␣ subunit of E. coli
replicative DNA polymerase III, Cell 126, 881–892 (2006); and
Bailey, S., Wing, R.A., and Steitz, T.A., The structure of T.
aquaticus polymerase III is distinct from eukaryotic replicative
DNA polymerases, Cell 126, 893–904 (2006).
Lee, J.Y., Chang, C., Song, H.K., Moon, J., Yang, J.K., Kim, H.-K.,
Kwon,S.-T.,and Suh,S.W., Crystal structure of NAD
⫹
-dependent
DNA ligase: modular architecture and functional implications,
EMBO J. 19, 1119–1129 (2000).
Li,Y., Korolev, S., and Waksman, G., Crystal structures of open and
closed forms of binary and ternary complexes of the large frag-
ment of Thermus aquaticus DNA polymerase I: structural basis
for nucleotide incorporation, EMBO J. 17, 7514–7525 (1998).
Mott, M.L. and Berger, J.M., DNA replication initiation: mecha-
nisms and regulation in bacteria, Nature Rev. Microbiol. 5, 343-
354 (2007).
Mott, M.L., Erzberger, J.P., Coons, M.M., and Berger, J.M., Struc-
tural synergy and molecular crosstalk between bacterial heli-
case loaders and replication initiators, Cell 134, 623–634
(2008). [The X-ray structure of DnaC protein.]
Mulcair, M.D., Schaeffer, P.M., Oakley, A.J., Cross, H.F., Neylon,
C., Hill, T.M., and Dixon, N.E., A molecular mousetrap deter-
mines polarity of termination of DNA replication in E. coli,
Cell 125, 1309–1319 (2006).
Nandakumar, J., Nair, P.A., and Shuman, S., Last stop on the road
to repair: Structure of E. coli DNA ligase bound to nicked
DNA-adenylate, Mol. Cell 26, 257–271 (2007); and Shuman, S.,
DNA ligase: progress and prospects, J. Biol. Chem. 284,
17365–17369 (2009).
O’Donnell, M., Replisome architecture and dynamics in E. coli, J
Biol. Chem. 281, 10653–10656 (2006); and Johnson, A. and
O’Donnell, M., Cellular DNA replicases: Components and dy-
namics at the replication fork, Annu. Rev. Biochem. 74,
283–315 (2005).
Patel, S.S. and Donmez, I., Mechanisms of helicases, J. Biol. Chem.
281, 18265–18268 (2006); and Patel, S.S. and Picha, K.M., Struc-
ture and function of hexameric helicases, Annu. Rev. Biochem.
69, 651–697 (2000).
Raghunathan, S., Kozlov, A.G., Lohman, T.M., and Waksman, G.,
Structure of the DNA binding domain of E. coli SSB bound to
ssDNA, Nature Struct. Biol. 7, 648–652 (2000).
Rothwell, P.J. and Waksman, G., Structure and mechanism of
DNA polymerases, Adv. Prot. Chem. 71, 401–440 (2005).
Simonetta, K.R., Kazmirski, S.L., Goedken, E.R., Cantor, A.J.,
Kelch, B.A., McNally, R., Seyedin, S.N., Makino, D.L., O’Don-
nell, M., and Kuriyan, J., The mechanism of ATP-dependent
primer-template recognition by a clamp loader complex, Cell
137, 659–671 (2009).
Singleton, M.R., Dillingham, M.S., and Wigley, D.B., Structure and
mechanism of helicases and nucleic acid translocases, Annu.
Rev. Biochem. 76, 23–50 (2007).
Singleton, M.R., Sawaya, M.R., Ellenberger, T., and Wigley, D.B.,
Crystal structure of T7 gene 4 ring helicase indicates a mecha-
nism for sequential hydrolysis of nucleotides, Cell 101,
589–600 (2000).
Soultanas, P. and Wigley, D.B., Unwinding the ‘Gordian knot’ of
helicase action, Trends Biochem. Sci. 26, 47–54 (2001).
Watson, J.D. and Crick,F.H.C.,Genetical implications of the struc-
ture of deoxyribonucleic acid, Nature 171, 964–967 (1953).
[The paper in which semiconservative DNA replication was
first postulated.]
Eukaryotic DNA Replication
Allsopp, R.C., Vaziri, H., Patterson, C., Goldstein, S., Younglai,
E.V., Futcher, A.B., Greider, C.W., and Harley, C.B., Telomere
length predicts replicative capacity of human fibroblasts, Proc.
Natl.Acad. Sci. 89, 10114–10118 (1992).
Arezi, B. and Kuchta, R.D., Eukaryotic DNA primase, Trends
Biochem. Sci. 25, 572–576 (2000).
Armanios, M., Syndromes of telomere shortening, Annu. Rev.
Genomics Hum. Genet. 10, 45–61 (2009).
References 1255
JWCL281_c30_1173-1259.qxd 8/10/10 9:13 PM Page 1255