84 3. R
a
R
b
Transformation Method
Proof. Suppose that y
0
y
1
... = λ(s
0
,x
0
x
1
...). From the definition of M,
we have
y
i
= f(y(i − 1,t),u(i, p +1),x(i, r +1)),
u
i+1
= g(y(i − 1,t),u(i, p +1),x(i, r +1)), (3.4)
i =0, 1,...
From the proof of Theorem 3.1.3, eq
τ
(i) holds for i =0, 1,... Using the
hypothesis of the lemma, for any x
i
, ..., x
i−r
, u
i
, ..., u
i−p
, y
i+τ
, ..., y
i−t
,
if they satisfy the equation eq
τ
(i)thenx
i
= f
∗
τ
( x(i − 1,r), u(i, p +1),
y(i + τ, τ + t + 1)). Thus for such values of x
i
,..., x
i−r
, u
i
, ..., u
i−p
, y
i+τ
,...,
y
i−t
,wehave
x
i
= f
∗
τ
(x(i − 1,r),u(i, p +1),y(i + τ,τ + t +1)),i=0, 1,... (3.5)
Denote y
j−τ
= y
j
for any j. Using (3.5) and (3.4), it immediately follows
that
x
i
= f
∗
τ
(x(i − 1,r),u(i, p +1),y
(i, τ + t +1)),
u
i+1
= g(y
(i − τ − 1,t),u(i, p +1),x(i, r +1)),
i =0, 1,...
From the definition of M
∗
,wehave
x
0
x
1
...= λ
∗
(x(−1,r),u(0,p+1),y
(−1,τ + t),y
0
y
1
...)
= λ
∗
(x(−1,r),u(0,p+1),y(τ − 1,τ + t),y
τ
y
τ+1
...).
Theorem 3.1.4. Assume that each state of M has a predecessor state and
that for any x
i
, ..., x
i−r
,u
i
, ..., u
i−p
,y
i+τ
, ..., y
i−t
, if they satisfy the
equation eq
τ
(i) then x
i
= f
∗
τ
(x(i − 1,r),u(i, p +1),y(i + τ,τ + t +1)).Then
M
∗
is a weak inverse with delay τ of M.
Proof. For any state s
0
= y(−1,t),u(0,p +1),x(−1,r) of M, since
any state of M has a predecessor state, there exist x
−r−1
,...,x
−r−τ
∈ X,
u
−p−1
,...,u
−p−τ
∈ U, y
−t−1
,...,y
−t−τ
∈ Y such that
λ(s
−τ
,x
−τ
...x
−1
)=y
−τ
...y
−1
,
δ(s
−τ
,x
−τ
...x
−1
)=s
0
,
where
s
−τ
= y(−τ − 1,t),u(−τ,p +1),x(−τ − 1,r).
For any input x
0
x
1
... of M,let