fnaea
2. Marurruue
KoMnacbt c rapryr.uroi
2.4,
Bttuy>t<deHnoe
de uxen
ue KapmyruKu
MaeHumHoeo
Ko*,
naca
Brrxyxreuuoe
ABlDKeHue
KapryrtrKr,r
MK npoacxoAuT
rroa
4eftcrareu
MoMeH-
ToB
BHerrrHHX
cr{;l rr3Merrroruuxct
Bo BpeMeHH ilepuoAllqecnlt
u.Jrr,r no
crryvairHouy
3aKouy.
3l.r
sosAeficrBnrr
Bo3HHKaror B
peiububD( ycnoBfi",lx
3KclJryarauuu npn6o-
pa,
Hanpr.IMep,
B
pe3y,IlbTaTe
KatrKr]
cy^ilHa
H MoryT
oKa3brBaTb
3aMeTHoe
BJrnrrrr4e Ha
KaqecrBo
ero
pa6oru.
A-ru
oqesxu xapaKrepa n
grerreHr4
BilfiflHleu
yKruaHHbrx
MoMeHToB BHerIrHux
cu.r o6paruucr K
ypaBneulrn (2.2),
B KoropoM
MorlreHT
Tpeurut
B onoprx KapryrrrKr.t
6yAeu
culrrarr upene6pexr.rMo
ruar6rM,
a Mo,\reHT
M(t)
uz*reuxwweMc.fi
rro rapMo-
IIUqeCKOMV
3aKOI{V:
M(t)
=
M
"sinat,
(2.28)
rre
L[o
-
aMILIIHTyAHoe 3HaqeHlre Bo3Mylrlarcqero
MoMerrra. llpu
yra:arnrbrx
ycno-
Brqx c
yu€Tou
oSosHaqesni, npHHf,TErx
B flpe^4br.uyueu naparpa$e:
ypaBuerrfie
(2.2)
nplrMef
sua:
llocronrry
[onyrreHHoe
ypaBHeHr.re
rBJu{erct
nrcrefinuu
c
noqrornHbrMu
Ko-
e$Qnqueumvs,
yron
d 6yrcr
r{3Merurr6cr
rro rapMoHr{rrecxoMy
3aKor{y
c
qacro-
roit
0
BblHyxltuollero eosgeficrrur.
]ro rro3Bo,.rrer raHT€pecyrouee
Hac
peureHr{e
npeacTaBr4Tb
B cneayrouleM
Br.rAe:
e=Arcos&)t+,\sinrn,
r\e A1u42
-
IrcKoMbre
aMlln}I|ylbr role6aHufi
KapTyruKr{.
Onpe4erurnr npor,r3BoAHEre
A
u A:
d
=
-
Ata
sin rr;t + A"a
cos
at,
ti
=
-Ara
t
cos rrlr
-
A"at sin ot
u noncraBrrM lrx BMecre
c
parencrsoru
(2.30)
n
ypanHenne (2.29).
B
pesyrrrare
noflyqi4v;
-
Aro'cos
rdl
-
Aza'sin
rrtr
-
2A.,ha
sin att
+
2Arhcos
at
+
d,+2hu+/,lu=M,
sinat.
"I
+
al
ercos
rrl
+
al ersin .D/
=
A n
"in ,,.
(2.2e)
(2.3o)
(2.31)
/t ?t\
[-rmoro,
qro6sr
nrrflo,.lnrnocb
paBeHcrBo (2.32),
AonxHbr
6rrrr
panxu
roe(f-
tprlqr.renrrr
trpu oanHaKoBbrx rapMonrrKax
B ero lenoi
u npaaoft
qacrflx.
3ro
norno-
24