06JIaCTblO
Onpe~eJIeHHH
<pyHKUHH
<p
B HOBbIX
nepexeaaux,
KaK
3TO
cnenyer H3 <pOpMyJI (16.16),
6y~eT
nonyxpyr
X
2
+ y2<
!R
2
o
,
y>O.
I'pa-
naua
pasneaa
.llBYX
cpen
r=R
H BHeIIIHHH
rpanaua
r=R.
o
nepeanyr
COOTBeTCTBeHHO B nOJIyoKpy2KHOCTU: X
2
+ y2= R2
(y>O)
H X
2
+ y2= R2
0
(y>O).
ECJIU
6bI
npanaa
lIaCTb
ypaBHeHHH
(16.17)
1 .
f(r)==2[Es(r)~o(r)+q(r)]
(16.19)
6bIJIa HaBeCTHa, TO
npa
JII060M
<pHKCHpOBaHHOM
3HaqeHHH
y
(0<
y<i.R
o
)
,
nrparotnea
POJIb
napauerpa,
MOiKHO 6bIJIO
6bI
JIerKO
onpenemrn,
peIIIeHHe
06bIKHOBeHHOrO AH<p<pepeHllHaJIbHOrO ypaBHeHH5I
nepsoro
nopanxa
na
JIHH""
MN
(pHC. 23),
aerrpepsmaoe
B TOtIKaX L
H P
[CM.
(16.3)] H
nonnaaeanoe
yCJIOBHIO
<p
(1\1)
==~
(-
VR
2
0
-
s'. y)
==
0, (16.20)
xoropoe asrrexaer aa
(16.2).
TOJIbKO liTO B@CKaaaHHOe
3aMellaHHe
nOaBOJIHeT C<pOpMyJIHpOBaTb
CJIe,nyIOIUHH HTepaUHOHHbIH
npouecc.
no
npOH3BOJIbHO
3a~aHHOMY
HallaJIbHOMY
pacnpezieneaaro
f
(ir)
aaxonax
<PYHKUHIO
<p,
pemaa
ypaa-
HeHHe
::
+E(r)ff=f
(r).
(16.21)
C
nOMOIUblO HaH,neIiHOH <pyHKUHH
<p
no
<popMyJIe (16.18)
onpenenaex
cpo(r)
, a
sarea
no
<popMyJIe (16.19)
f(r).
,llaJIee
npouecc
nOBTopHeM.
!I
o R
RIJ
x
PRC.
23.
06JIaCTb
H3MeHeHHSI
nepesreaaax X=TIJo, y r Y
1_~2
B
c4>epHQeCKH-CHMMeTpHQHhlX
sa-
AaqaX
PHC.
24.
Pacseraaa
cerxa Y3J10B
B
MeTO~e
Bna~HMHpoBa
B § 15
6bIJia
AOKaaaHa
CXO.llHMOCTb
3Toro
npouecca
H
oueHeHa
CKO-
POCTb
ero
CXO,ll.HMOCTH.
Taxosa
otiutaa
H.lleH MeTO.lla
BJIa.llHMHpoBa.
OnHIIIeM
reneps
osens
y,ll.06HbIH
,lI.JISI
npaKTHtIeCKOH
peaJIH3aU
HH
aJIrOpHTM tIHCJIeHHOrO
perneHHH 3TOH aa.llatIH.
06JIaCTb
onpe.lleJIeHHH
<pyHKU
HH
<p(x,·
y) noxpoex ceTKOH JIHHHH
;r
2
= x
2
+ y2= const
H
y=const
TaK,
KaK
3TO noxasaao
aa
pRC. 24. Kazcnyro y3JIOBylO TOQKY
ceTKH OTMeTUM
.llByMH HH.lleKCaMIf, BTOpOH 1I3 KOTOpbIX
060aHaQaeT
121