Назад
References 647
[412] F. Fogolari, A. Brigo, and H. Molinari. The Poisson-Boltzmann equation for
biomolecular electrostatics: a tool for structural biology. J. Mol. Recognit.,
15:377–392, 2002.
[413] M. C. Foley and T. Schlick. Simulations of dna pol λ R517 mutants indicate 517’s
crucial role in ternary complex stability and suggest DNA slippage origin. J. Amer.
Chem. Soc., 130:3967–3977, 2008.
[414] N. Foloppe, B. Hartmann, L. Nilsson, and A. D. MacKerell, Jr. Intrinsic con-
formational energetics associated with the glycosyl torsion in DNA: A quantum
mechanical study. Biophys. J., 82:1554–1569, 2002.
[415] N. Foloppe and A. D. MacKerell, Jr. All-atom empirical force field for nucleic
acids: I. Parameter optimization based on small molecule and condensed phased
macromolecular target data. J. Comput. Chem., 21:86–104, 2000.
[416] J.J. Forman, P.A. Clemons, S.L. Schreiber, and S.J. Haggarty. SpectralNET–an ap-
plication for spectral graph analysis and visualization. BMC Bioinformatics, 6:260,
2005.
[417] A. Forsgren, P. E. Gill, and M. H. Wright. Interior methods for nonlinear
optimization. SIAM Rev., 44:525–597, 2002.
[418] J. Frank. Three-Dimensional Electron Microscopy of Macromolecular Assemblies.
Academic Press, San Diego, CA, 1996.
[419] J. Frank. How the ribosome works. Sci. Amer., 86:428–439, 1998.
[420] M. D. Frank-Kamenetskii. Unravelling DNA. VCH Publishers, New York, NY,
1993. (Translated from Russian by L. Liapin).
[421] M. D. Frank-Kamenetskii. Triplex DNA structures. Ann. Rev. Biochem., 64:65–95,
1995.
[422] H. Frauenfelder, S. G. Sligar, and P. G. Wolynes. The energy landscapes and
motions of proteins. Science, 254:1598–1603, 1991.
[423] H. Frauenfelder and P. G. Wolynes. Biomolecules: Where the physics of
complexity and simplicity meet. Phys. Today, 47:58–64, 1994.
[424] P. L. Freddolino, F. Liu, M. Gruebele, and K. Schulten. Ten-microsecond molecu-
lar dynamics simulation of a fast-folding WW domain. Biophys. J., 94:L75–L77,
2008.
[425] P. L. Freddolino, A. S. Arkhipov, S. B. Larson, A. McPherson, and K. Schulten.
Molecular dynamics simulations of the complete satellite tobacco mosaic virus.
Structure, 14:437–449, 2006.
[426] P. L. Freddolino, S. Park, B. Roux, and K. Schulten. Force field bias in protein
folding simulations. Biophys. J., 96:3772–3780, 2009.
[427] P. L. Freddolino and K. Schulten. Common structural Transitions in explicit-
solvent simulations of villin headpiece folding. Biophys. J., 97:2338–2347,
2009.
[428] D. Frenkel and B. Smit. Understanding Molecular Simulations. From Algorithms
to Applications. Academic Press, San Diego, CA, second edition, 2002.
[429] M. Friedrichs, R. Zhou, S. R. Edinger, and R. A. Friesner. Poisson-Boltzmann
analytical gradients for molecular modeling calculations.
J. Phys. Chem. B, 103:
3057–3061, 1999.
648 References
[430] R. A. Friesner and J. R. Gunn. Computational studies of protein folding. Annu.
Rev. Biophys. Biomol. Struc., 25:315–342, 1996.
[431] F. B. Fuller. The writhing number of a space curve. Proc. Natl. Acad. Sci. USA,
68:815–819, 1971.
[432] F. B. Fuller. Decomposition of the linking number of a closed ribbon: A problem
from molecular biology. Proc. Natl. Acad. Sci. USA, 75:3557–3561, 1978.
[433] E. A. Galburt and B. L. Stoddard. Time-resolved macromolecular crystallography.
Phys. Today, 54:33–39, 1989.
[434] R. C. Gallo. A reflection on HIV/AIDS research after 25 years. Retrovirology, 3:72,
2006.
[435] H. H. Gan, S. Pasquali, and T. Schlick. Exploring the repertoire of RNA sec-
ondary motifs using u graph theory: Implications for RNA design. Nuc. Acids Res.,
31:2926–2943, 2003.
[436] H. H. Gan, R. A. Perlow, S. Roy, J. Ko, M. Wu, J. Huang, S. Yan, A. Nicoletta,
J. Vafai, D. Sun, L. Wang, J. E. Noah, S. Pasquali, and T. Schlick. Analysis
of protein sequence/structure similarity relationships. Biophys. J., 83:2781–2791,
2002.
[437] H. H. Gan, A. Tropsha, and T. Schlick. Lattice protein folding with two and four-
body statistical potentials. Proteins: Struc. Func. Gen., 43:161–174, 2001.
[438] H.H. Gan, D. Fera, J. Zorn, M. Tang, N. Shifeldrim, U. Laserson, N. Kim, and
T. Schlick. RAG: RNA-As-Graphics database concepts, analysis, and features.
Bioinformatics, 20:1285–1291, 2004.
[439] R. M. Ganunis, H. Guo, and T. D. Tullius. Effect of the crystallizing agent
2-methyl-2,4-pentanediol on the structure of adenine tract DNA in solution.
Biochemistry, 35:13729–13732, 1996.
[440] F. Gao, E. Bailes, D. L. Robertson, Y. Chen, C. M. Rodenburg, S. F. Michael,
L.B.Cummins,L.O.Arthur,M.Peeters,G.M.Shaw,P.M.Sharp,andB.H.
Hahn. Origin of HIV-1 in the chimpanzee pan troglodytes troglodytes. Nature,
397:436–441, 1999.
[441] J. Gao, S. Ma, D. T. Major, K. Nam, J. Pu, and D. G. Truhlar. Mechanisms and
free energies of enzymatic reactions. Chem. Rev., 106:3188–3209, 2006.
[442] J. Gao and B. Xu. Applications of nanomaterials inside cells. Nano Today,
4:37–51, 2009.
[443] A. E. Garcia and J. N. Onuchic. Folding a protein in a computer: an atomic
description of the folding/unfolding of protein A. Proc. Natl. Acad. Sci. USA,
100:13898–13903, 2003.
[444] A. E. Garcia and D. Pascheck. Simulation of the pressure and temperature
folding/unfolding equilibrium of a small RNA hairpin. J. Amer. Chem. Soc.,
130:815–817, 2008.
[445] A. E. Gar´cia and K. Y. Sanbonmatsu. α-Helical stabilization by side chain shield-
ing of backbone hydrogen bonds. Proc. Natl. Acad. Sci. USA, 99:2782–2787,
2002.
[446] B. Garc´ıa-Archilla, J.M. Sanz-Serna, and R.D. Skeel. Long-time-step methods for
oscillatory differential equations.
SIAM J. Sci. Comput., 20:930–963, 1998.
References 649
[447] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations.
Prentice Hall, Englewood Cliffs, New Jersey, 1971.
[448] P. Gedeck and P. Willet. Visual and computational analysis of structure-activity re-
lationships in high-throughput screening data. Curr. Opin. Chem. Biol., 5:389–395,
2001.
[449] C. A. Gelfand, G. E. Plum, S. Mielewczyk, D. P. Remeta, and K. J. Breslauer.
A quantitative method for evaluating the stabilities of nucleic acid complexes.
Proc. Natl. Acad. Sci. USA, 96:6113–6118, 1999.
[450] J. Gevertz, H. H. Gan, and T. Schlick. In Vitro RNA random pools are not
structurally diverse: A computational analysis. RNA, 11:853–863, 2005.
[451] A. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski. A knowledge-based
approach in designing combinatorial or medicinal chemistry libraries for drug dis-
covery. 1. A qualitative and quantitative characterization of known drug databases.
J. Comb. Chem., 1:55–68, 1999.
[452] N. Ghosh and Q. Cui. pKa of residue 66 in Staphylococal nuclease. I. insights
from QM/MM simulations with conventional sampling. J. Phys. Chem., 112:
8387–8397, 2008.
[453] S. Ghosh, A. Nie, J. An, and Z. Huang. Structure-based virtual screening of
chemical libraries for drug discovery. Curr. Opin. Chem. Biol., 10:194–202, 2006.
[454] W. W. Gibbs. Evolution in a bottle: Synthetic life oozes closer to reality. self-
replicating RNAs advance science another step toward artificial life. Sci. Amer.,
300:18–21, 2009.
[455] K. B. Gibson and H. A. Scheraga. Decisions in force field development: Reply to
Kollman and Dill. J. Biomol. Struct. Dyn., 8:1109–1111, 1991.
[456] J. C. Gilbert and C. Lemarechal. Some numerical experiments with variable-
storage quasi-Newton algorithms. Math. Prog. B, 45:407–435, 1989.
[457] J. C. Gilbert and J. Nocedal. Global convergence properties of conjugate gradient
methods for optimization. Technical Report 1268, Institut National de Recherche
en Informatique et en Automatique, January 1991.
[458] P. E. Gill and M. W. Leonard. Reduced-Hessian quasi-Newton methods for
unconstrained optimization. SIAM J. Optim., 12:209–237, 2001.
[459] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press,
London, England, 1983.
[460] P. M. W. Gill. A new expansion of the Coulomb interaction. Chem. Phys. Lett.,
270:193–195, 1997.
[461] P. Gkeka and L. Sarkisov. Spontaneous formation of a barrel-stave pore in a coarse-
grained model of the synthetic LS3 peptide and a DPPC lipid bilayer. J. Phys.
Chem. B, 113:6–8, 2009.
[462] N. M. Glykos, G. Cesareni, and M. Kokkinidis. Protein plasticity to the extreme:
Changing the topology of a 4–helical bundle with a single amino acid substitution.
Struc. Fold. Design, 7:597–603, 1999.
[463] N. G¯o and H. Taketomi. Respective roles of short- and long-range interactions in
protein folding. Proc. Natl. Acad. Sci. USA, 75:559–563, 1978.
[464] S. Goedecker. Linear scaling electronic structure methods. Rev. Mod. Phys.
,
71:1085–1123, 1999.
650 References
[465] V. Gogonea, D. Su´arex, A. van der Vaart, and K. M. Merz, Jr. New developments
in applying quantum mechanics to proteins. Curr. Opin. Struct. Biol., 11:217–223,
2001.
[466] B. L. Golden, H. Kim, and E. Chase. Crystal structure of a phage Twort Group I
ribozyme-product complex. Nat. Struct. Mol. Biol., 12:82–89, 2005.
[467] G. H. Golub and C. F. van Loan. Matrix Computations. John Hopkins University
Press, Baltimore, MD, second edition, 1986.
[468] O. Gonzales and J. C. Simo. On the stability of symplectic and energy-momentum
conserving algorithms for nonlinear Hamiltonian systems with symmetry. Comput.
Meth. App. Mech. Engin., 134:197, 1994.
[469] J. A. Gonz´alez and R. Pino. A random number generator based on unpredictable
chaotic functions. Comput. Phys. Comm., 120:109–114, 1999.
[470] H. Gonzlez-Daz, Y. Gonzlez-Daz, L. Santana, F.M. Ubeira, and E. Uriarte.
Proteomics, networks and connectivity indices. Proteomics, 8:750–778, 2008.
[471] H. Gonzlez-Daz, S. Vilar, L. Santana, and E. Uriarte. Medicinal chemistry
and bioinformatics–current trends in drugs discovery with networks topological
indices. Curr. Top. Med. Chem., 7:1015–1029, 2007.
[472] L. Goodman, V. Pophristic, and F. Weinhold. Origin of methyl internal rotation
barriers. Acc. Chem. Res., 32:983–993, 1999.
[473] A. A. Gorin, V. B. Zhurkin, and W. K. Olson. B-DNA twisting correlates with base
pair morphology. J. Mol. Biol., 247:34–48, 1995.
[474] H. Gould, J. Tobochnik, and W. Christian. An Introduction to Computer Simulation
Methods: Applications to Physical Systems. Addison-Wesley, San Francisco, CA,
third edition, 2007.
[475] P. Grayson, E. Tajkhorshid, and K. Schulten. Mechanisms of selectivity in chan-
nels and enzymes studied with interactive molecular dynamics. Biophys. J., 85:36,
2003.
[476] P. Green. Whole-genome disassembly. Proc. Natl. Acad. Sci. USA, 99:4143–4144,
2002.
[477] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems.MIT
Press, Cambridge, Massachusetts, 1988.
[478] L. Greengard. Fast algorithms for classical physics. Science, 265:909–914, 1994.
[479] L. Greengard and V. Rokhlin. A fast algorithm for particle simulation. J. Comput.
Phys., 73:325–348, 1987.
[480] L. Greengard and V. Rokhlin. On the evaluation of electrostatic interactions in
molecular modeling. Chemica Scripta, 29A:139–144, 1989.
[481] L. Greengard and V. Rokhlin. A new version of the fast multipole method for the
Laplace equation in three dimensions. Acta Numerica, 6:229–269, 1997.
[482] A. Griewank and G. F. Corliss, editors. Automatic Differentiation of Algorithms:
Theory, Implementation, and Applications. SIAM, Philadelphia, PA, 1991.
[483] S. A. Grigoryev, G. Arya, S. Correll, C. L. Woodcock, and T. Schlick. Evidence for
heteromorphic chromatin fibers from analysis of nucleosome interactions.
Proc.
Natl. Acad. Sci. USA, 106:13317–13322, 2009.
References 651
[484] J. M. Grimes, J. N. Burroughs, P. Gouet, J. M. Diprose, R. Malby, S. Zi´entara,
P. P. C. Mertens, and D. I. Stuart. The atomic structure of the bluetongue virus
core. Nature, 395:470–478, 1998.
[485] H. Grubm¨uller. Predicting slow structural transitions in macromolecular systems:
Conformational flooding. Phys. Rev. E, 52:2893–2906, 1995.
[486] H. Grubm¨uller, H. Heller, A. Windemuth, and K. Schulten. Generalized Verlet al-
gorithm for efcient molecular dynamics simulations with long-range interactions.
Mol. Sim., 6:121–142, 1991.
[487] P. G ¨untert. Structure calculation of biological macromolecules from NMR data.
Quart. Rev. Biophys., 31:145–237, 1998.
[488] F. Guo, A. R. Gooding, and T. R. Cech. Structure of the tetrahymena ribozyme:
base triple sandwich and metal ion at the active site. Mol Cell., 16:351–362, 2004.
[489] O. Guvench and Jr. A. D. MacKerell. Comparison of protein force elds for molec-
ular dynamics simulations. In A. Kukol, editor, Methods in Molecular Biology,
volume 443, pages 63–88. Humana Press, Totowa, NJ, 2008.
[490] W.W. Hager and H. Zhang. A new conjugate gradient method with guaranteed
descent and an efficient line search. SIAM J. Opt., 16:170, 2005.
[491] P. J. Hagerman. Flexibility of DNA. Ann. Rev. Biophys. Biophys. Chem., 17:
265–286, 1988.
[492] P. J. Hagerman. Straightening out the bends in curved DNA. Biochim. Biophys.
Acta, 1131:125–132, 1992.
[493] P. J. Hagerman. Flexibility of RNA. Ann. Rev. Biophys. Biomol. Struc., 26:
139–156, 1997.
[494] J. M. Haile. Molecular Dynamics Simulations: Elementary Methods. John Wiley
& Sons, New York, NY, 1992.
[495] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems, volume 14 of Springer Series in Computational
Mathematics. Springer-Verlag, New York, NY, second edition, 1996.
[496] P. J. Hajduk and J. Greer. A decade of fragment-based drug design: Strategic
advances and lessons learned. Nat. Rev. Drug Disc., 6:211–219, 2007.
[497] T. A. Halgren. Merck molecular force field: I. Basis, form, scope, parameterization
and performance of MMFF94. J. Comput. Chem., 17:490–519, 1996.
[498] T. A. Halgren. Merck molecular force eld: II. MMFF94 van der Waals
and electrostatic parameters for intermolecular interactions. J. Comput. Chem.,
17:520–552, 1996.
[499] T. A. Halgren. MMFF VI. MMFF94s option for energy minimization studies.
J. Comput. Chem., 20:720–729, 1999.
[500] T. A. Halgren. MMFF VII. Characterization of MMFF94, MMFF94s, and other
widely available force fields for conformational energies and for interaction
energies and geometries. J. Comput. Chem., 20:730–748, 1999.
[501] T. A. Halgren and W. Damm. Polarizable force fields. Curr. Opin. Struct. Biol.,
11:236–242, 2001.
[502] K. B. Hall. RNA in motion.
Curr. Opin. Chem. Biol., 12:612–618, 2008.
[503] M. Hamada, K. Tsuda, T. Kudo, T. Kin, and K. Asai. Mining frequent stem patterns
from unaligned RNA sequences. Bioinformatics, 22:2480–2487, 2006.
652 References
[504] D. Hamelerg, C. A. F. de Oliveira, and J. A. McCammon. Sampling of slow dif-
fusive conformational transitions with accelerated molecular dynamics. J. Chem.
Phys., 127:155102, 2007.
[505] P. Hammarstr¨om, F. Schneider, and J. W. Kelly. Trans-suppression of misfolding
in an amyloid disease. Science, 293:2459–2462, 2001.
[506] W. Han, C.-K. Wan, and Y.-D. Wu. Toward a coarse-grained protein model coupled
with a coarse-grained solvent model: solvation free energies of amino acid side
chains. J. Chem. Theo. Comp., 4:1891–1901, 2008.
[507] M. Hann and R. Green. Cheminformatics – A new name for an old problem? Curr.
Opin. Chem. Biol., 3:379–383, 1999.
[508] U. H. E. Hansmann. Parallel-tempering algorithm for conformational studies of
biological molecules. Chem. Phys. Lett., 281:140–150, 1997.
[509] U. H. E. Hansmann and Y. Okamoto. New Monte Carlo algorithms for protein
folding. Curr. Opin. Struct. Biol., 9:177–183, 1999.
[510] T. Hansson, C. Oostenbrink, and W. F. van Gunsteren. Molecular dynamics
simulations. Curr. Opin. Struct. Biol., 12:190–196, 2002.
[511] B. Hao, W. Gong, T. K. Ferguson, C. M. James, J. A. Krzycki, and M. K. Chan.
A new UAG-encoded residue in the structure of a methanogen methyltransferase.
Science, 296:1462–1466, 2002.
[512] M.-H. Hao and W. K. Olson. Modeling DNA supercoils and knots with B-spline
functions. Biopolymers, 28:873–900, 1989.
[513] M. H. Hao, M. R. Pincus, S. Rackovsky, and H. A. Scheraga. Unfolding and re-
folding of the native structure of bovine pancreatic trypsin inhibitor studied by
computer simulations. Biochemistry, 32:9614–9631, 1993.
[514] T. E. Haran, J. D. Kahn, and D. M. Crothers. Sequence elements responsible for
DNA curvature. J. Mol. Biol., 244:135–143, 1994.
[515] T. E. Haran and U. Mohanty. The unique structure of A-tracts and intrinsic DNA
bending. Quart. Rev. Biophys., 42:41–81, 2009.
[516] J. Harms, F. Schluenzen, R. Zarivach, A. Bashan, S. Gat, I. Agmon, H. Bartels,
F. Franceschi, and A. Yonath. High resolution structure of the large ribosomal
subunit from a mesophilic eubacterium. Cell, 107:679–688, 2001.
[517] H. S. Harned and B. B. Owen. The Physical Chemistry of Electrolytic Solutions.
American Chemical Society Monograph Series. Reinhold Publishing Corporation,
New York, NY, second edition, 1950.
[518] W. E. Harte, Jr., S. Swaminathan, and D. L. Beveridge. Molecular dynamics of
HIV-1 protease. Proteins: Struc. Func. Gen., 13:175–194, 1992.
[519] F. U. Hartl and M. H.-Hartl. Molecular chaperones in the cytosol: Nascent chain
to folded protein. Science, 295:1852–1858, 2002.
[520] S. C. Harvey, M. Dlakic, J. Griffith, R. Harrington, K. Park, D. Sprous, and
W. Zacharias. What is the basis of sequence-directed curvature in DNAs containing
A-tracts? J. Biomol. Struct. Dynam., 13:301–307, 1995.
[521] S. C. Harvey and H. A. Gabb. Conformational transitions using molecular
dynamics with minimum biasing. Biopolymers, 33:1167–1172, 1993.
References 653
[522] S. C. Harvey and M. Prabhakaran. Ribose puckering: Structure, dynamics, en-
ergetics and the pseudorotation cycle. J. Amer. Chem. Soc., 108:6128–6136,
1986.
[523] S. C. Harvey, M. Prabhakaran, B. Mao, and J. A. McCammon. Phenylanine transfer
RNA: Molecular dynamics simulation. Science, 223:1189–1191, 1984.
[524] S. C. Harvey, R. K.-Z. Tan, and T. E. Cheatham, III. The flying ice cube: Ve-
locity rescaling in molecular dynamics leads to violation of energy equipartition.
J. Comput. Chem., 19:726–740, 1998.
[525] Y. Hashem and P. Auffinger. A short guide for molecular dynamics simulations of
RNA systems. Methods, 47:187–197, 2009.
[526] Y. Hashem, E. Westhof, and P. Auffinger. Milestones in molecular dynamics simu-
lations of RNA systems. In T. Schwede and M. Peitsch, editors, Computational
Structural Biology, pages 363–399. World Scientific Publishing Co. Pte. Ltd.,
Hackensack, NJ, 2008.
[527] M. A. El Hassan and C. R. Calladine. Conformational characteristics of DNA:
Empirical classifications and a hypothesis for the conformational behaviour of
dinucleotide steps. Phil. Trans. Math. Phys. Engin. Sci., 355:43–100, 1997.
[528] S. A. Hassan, F. Guarnieri, and E. L. Mehler. A general treatment of solvent effects
based on screened Coulomb potentials. J. Phys. Chem. B, 104:6478–6489, 2000.
[529] W. A. Hasteline. Beyond chicken soup. Sci. Amer., 285:56–63, 2001.
[530] A. Hastings, P. Arzberger, B. Bolker, S. Collins, A. Irves, N. Johnson, and
M. Palmer. Quantitative bioscience for the 21st century. Bioscience, 55:511–517,
2005.
[531] H. A. Hauptman. The phase problem of X-ray crystallography. Phys. Today,
42:24–29, 1989.
[532] D. M. Hayes, P.A. Kollman, and S. Rothenberg. A conformational analysis of
H
3
PO
4
,H
3
PO
4
,HPO
2
4
and related model compounds. J. Amer. Chem. Soc.,
99:2150–2154, 1977.
[533] T. Haynes, D. Knisley, and J. Knisley. Using a neural network to identify to identify
secondary RNA structures quantified by graph invariants . Comm. in Math. Comp.
Chem., 60:277, 2008.
[534] T. Haynes, D. Knisley, E. Seier, and Y. Zou. A quantitative analysis of secondary
RNA structure using domination based parameters on trees. BMC Bioinformatics,
7:108, 2006.
[535] S. Hayward and B. L. deGroot. Normal modes and essential dynamics. Methods
Mol. Biol., 443:89–106, 2008.
[536] D. J. Hazuda, P. Felock, M. Witmer, A. Wolfe, K. Stillmock, J. A. Grobler,
A. Espeseth, L. Gabryelski, W. Schleif, C. Blau, and Michael D. Miller. Inhibitors
of strand transfer that prevent integration and inhibit HIV-1 replication in cells.
Science, 287:646–650, 2000.
[537] C. E. Hecht. Statistical Thermodynamics and Kinetic Theory. W. H. Freeman,
New York, NY, 1990.
[538] C. E. Heitsch. Analyzing the branching degree of RNA viral genomes: a hep-
atitis C case study . The Ninth Annual International Conference on Research in
Computational Molecular Biology (RECOMB 2005), 2005.
654 References
[539] D. M. Held, J. D. Kissel, J. T. Patterson, D. G. Nickens, and D. H. Burke. HIV-1
inactivation by nucleic acid aptamers. Front Biosci., 11:89–112, 2006.
[540] W. A. Hendrickson. Determination of macromolecular structures from anomalous
diffraction of synchrotron radiation. Science, 254:51–58, 1991.
[541] W. A. Hendrickson and C. Ogata. Phase determination from multiwavelength
anomalous diffraction measurements. Meth. Enzymol., 276:494–523, 1997.
[542] D. K. Hendrix, S. E. Brenner, and S. R. Holbrook. RNA structural motifs: building
blocks of a modular biomolecule. Q. Rev. Biophys., 38:221–243, 2005.
[543] G. Henkelman and H. J´onsson. Improved tangent estimate in the nudged elastic
band method for finding minimum energy paths and saddle points. J. Chem. Phys.,
113:9978–9985, 2000.
[544] C. M. Henry. Pharmacogenomics. Chem. Engin. News, 79:37–42, 2001.
[545] T. Hermann and D. J. Patel. Stitching together RNA tertiary architectures. J. Mol.
Biol., 294:828–849, 1999.
[546] T. Hermann and D. J. Patel. Adaptive recognition by nucleic acid aptamers.
Science, 287:820–825, 2000.
[547] T. L. Hill. An Introduction to Statistical Thermodynamics. Dover, New York, NY,
1986.
[548] B. E. Hingerty, R. H. Ritchie, T. L. Ferrell, and J. E. Turner. Dielectric effects in
biopolymers: The theory of ionic saturation revisited. Biopolymers, 24:427–439,
1985.
[549] J.-B. Hiriart-Urruty and C. Lemar´echal. Convex Analysis and Minimization. Al-
gorithms I, volume 305 of Grundlehren der mathematischen Wissenschaften. A
Series of Comprehensive Studies in Mathematics. Springer-Verlag, Berlin and
Heidelberg, 1993.
[550] J.-B. Hiriart-Urruty and C. Lemar´echal. Convex Analysis and Minimization. Al-
gorithms II, volume 306 of Grundlehren der mathematischen Wissenschaften.
A Series of Comprehensive Studies in Mathematics. Springer-Verlag, Berlin and
Heidelberg, 1993.
[551] J. Hizver, H. Rozenberg, F. Frolow, D. Rabinovich, and Z. Shakked. DNA bending
by an adenine-thymine tract and its role in gene regulation. Proc. Natl. Acad. Sci.
USA, 98:8490–8495, 2001.
[552] P. Hobza and J.
ˇ
Sponer. Structure, energetics, and dynamics of the nucleic acid
base pairs: Nonempirical Ab Initio calculations. Chem. Rev., 99:3247–3276, 1999.
[553] R. W. Hockney and J. W Eastwood. Computer Simulation Using Particles.
McGraw-Hill, New York, NY, 1981.
[554] R. W. Hockney and J. W Eastwood. Computer Simulation Using Particles. Institute
of Physics, London, England, 1988.
[555] E. Hodgkin and K. Andrew-Cramer. Compound collections get focused. Modern
Drug Discovery, 3:55–60, 2000.
[556]
C.-J. H¨ogberg, A. M. Nikitin, and A. P. Lyubartsev. Modification of the CHARMM
force field for DMPC lipid bilayer. J. Comput. Chem., 29:2359–2369, 2008.
[557] S. R. Holbrook. RNA structure: The long and the short of it. Curr. Opin. Struct.
Biol., 15:302–308, 2005.
References 655
[558] S. R. Holbrook and S.-H. Kim. RNA crystallography. Biopolymers, 44:3–21, 1997.
[559] B. L. Holian, O. E. Percus, T. T. Warnock, and P. A. Whitlock. Pseudorandom
number generator for massively parallel molecular-dynamics applications. Phys.
Rev. E, 50:1607–1615, 1994.
[560] L. Holm and C. Sander. Mapping the protein universe. Science, 273:595–602,
1996.
[561] A. Holmgren and C.-I. Br¨anden. Crystal structure of chaperone protein PapD
reveals an immunoglobulin fold. Nature, 342:248–251, 1989.
[562] S. K. Holmgren, K. M. Taylor, L. E. Bretscher, and R. T. Raines. Code for
collagen’s stability deciphered. Nature, 392, 1998.
[563] M. Holst, N. Baker, and E. Wang. Adaptive multilevel finite element solution of
the Poisson-Boltzmann equation I. Algorithms and examples. J. Comput. Chem.,
21:1319–1342, 2000.
[564] B. Honig. Protein folding: From the Levinthal paradox to structure prediction.
J. Mol. Biol., 293:283–293, 1999.
[565] B. Honig and A. Nicholls. Classical electrostatics in biology and chemistry.
Science, 268:1144–1149, 1995.
[566] W. Hoover. Classical dynamics: Equilibrium phase-space distributions. Phys. Rev.
A, 31:1695–1697, 1985.
[567] P. J. Horn and C. L. Peterson. Chromatin higher order folding: Wrapping up
transcription. Science, 297:1824–1827, 2002.
[568] V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling.
Comparison of multiple Amber force fields and development of improved protein
backbone parameters. Proteins: Struct., Funct., Bioinf., 65:712–725, 2006.
[569] M. P. Horvath and S. C. Schultz. DNA G-quartets in a 1.86
˚
A resolution structure
of an Oxytricha Nova telomeric protein-DNA complex. J. Mol. Biol., 310:367–377,
2001.
[570] W. A. Houry, D. Frishman, C. Eckerskorn, F. Lottspeich, and F. U. Hartl. Iden-
tification of in vivo substrates of the chaperonin GroEL. Nature, 402:147–154,
1999.
[571] K. Howard. The bioinformatics gold rush. Sci. Amer., 283:58–63, 2000.
[572] H. Hu, Z. Y. Lu, and W. T. Yang. QM/MM minimum free-energy path: Method-
ology and application to triosephosphate isomerase. J. Chem. Theory Comput.,
3:390–406, 2007.
[573] H. Hu and W. Yang. Free energies of chemical reactions in solution and in en-
zymes with Ab Initio quantum mechanics/molecular mechanics methods. Annu.
Rev. Phys. Chem., 59:573–601, 2008.
[574] H. Hu and W. Yang. Development and application of ab initio QM/MM methods
for mechanistic simulation of reactions in solution and in enzymes. J. Mol. Struct.:
THEOCHEM
, 898:17–30, 2009.
[575] J. Hu, A. Ma, and R. Dinner. Monte Carlo simulations of biomolecules: the MC
module in CHARMM. J. Comput. Chem., 27:203–216, 2006.
[576] H. Huang, R. Chopra, G. L. Verdine, and S. C. Harrison. Structure of a covalently
trapped catalytic complex of HIV-1 reverse transcriptase: Implications for drug
resistance. Science, 282:1669–1675, 1998.
656 References
[577] J. Huang, T. Schlick, and A. Vologodskii. Dynamics of site juxtaposition in
supercoiled DNA. Proc. Natl. Acad. Sci. USA, 98:968–973, 2001.
[578] N. V. Hud and J. Feigon. Localization of divalent metal ions in the minor groove
of DNA A-tracts. J. Amer. Chem. Soc., 119:5756–5757, 1997.
[579] D. E. Humphreys, R. A. Friesner, and B. J. Berne. A multiple-time-step molecu-
lar dynamics algorithm for macromolecules. J. Phys. Chem., 98(27):6885–6892,
1994.
[580] P. H. H ¨unenberger and J. A. McCammon. Effect of artificial periodicity in
simulations of biomolecules under Ewald boundary conditions: A continuum
electrostatics study. Biophys. Chem., 78:69–88, 1999.
[581] P. H. H ¨unenberger and J. A. McCammon. Ewald artifacts in computer simula-
tions of ionic solvation and ion-ion interaction: A continuum electrostatics study.
J. Chem. Phys., 110:1856–1872, 1999.
[582] P. A. Hunt. QSAR using 2D descriptors and TRIPOS’ SIMCA. J. Comput.-Aided
Mol. Design, 13:453–467, 1999.
[583] S. Huo and J. E. Straub. The MaxFlux algorithm for calculating variationally opti-
mized reaction paths for conformational transitions in many body systems at finite
temperature. J. Chem. Phys., 107:5000–5006, 1997.
[584] T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life: Systems
biology. Ann. Rev. Genom. Hum. Genet., 2:343–372, 2001.
[585] J. Chen W. Im and C. L. Brooks, III. Application of torsion angle molecular
dynamics for efficient sampling of protein conformations. J. Comput. Chem.,
26:1565–1578, 2005.
[586] W. Im, D. Beglov, and B. Roux. Continuum solvation model: Computation of
electrostatic forces from numerical solutions to the Poisson-Boltzmann equation.
Comput. Phys. Comm., 111:59–75, 1998.
[587] W. Im, J. Chen, and C. L. Brooks, III. Peptide and protein folding and confor-
mational equilibria: Theoretical treatment of electrostatics and hydrogen bonding
with implicit solvent models. Adv. Protein Chem., 72:173–197, 2006.
[588] M. Ingelman-Sundberg. Pharmacogenomic biomakers for prediction of severe
adverse drug reactions. N. Eng. J. Med., 358:637–639, 2008.
[589] J. Inglese, D. S. Auld, A. Jadhav, R. L. Johnson, A. Simeonov, A. Yasgar,
W. Zheng, and C. P. Austin. Quantitative high-throughput screening qHTS:
A titration-based approach that efficiently identifies biological activities in large
chemical libraries. Proc. Natl. Acad. Sci. USA, 103:11473–11478, 2006.
[590] V. M. Ingram. Hemoglobin: The chemical difference between normal and sickle
cell hemoglobin. Nature, 180:326–328, 1957.
[591] The International Warfarin Pharmacogenetics Consortium. Estimation of the war-
farin dose with clinical and pharmacogenetic data. N.Engl.J.Med., 360:753–764,
2009.
[592] B. Isralewitz, J. Baudry, J. Gullingsrud, D. Kosztin, and K. Schulten. Steered
molecular dynamics investigations of protein function. J. Mol. Graph. Model.,
19:13–25, 2001.
[593] B. Isralewitz, M. Gao, and K. Schulten. Steered molecular dynamics and
mechanical functions of proteins. Curr. Opin. Struct. Biol., 11:224–230, 2001.