(
∆u = 0, r < R,
u|
r=R
= sin
³
ϕ +
π
4
´
sin θ;
(
∆u = 0, r > R,
|u| →
r→∞
0, u|
r=R
= sin
³
ϕ +
π
4
´
sin θ;
½
∆u = 0, r < 1,
(u + u
r
)|
r=1
= sin θ cos ϕ + sin
2
θ;
½
∆u = 0, r > 1,
|u| →
r→∞
0, (u − 2u
r
)|
r=R
= 1 + sin ϕ sin θ.
L
Lu = −
d
dx
µ
p(x)
du
dx
¶
+ ε(x)u, a < x < b,
p(x) ∈ C
2
(a; b); ε(x) ∈ C(a, b), p(x) > 0.
(1)
L
L
Lu = −u
00
0 < x < 1 u ∈
˚
C
1
[0; 1]
Lu = −
d
dx
(e
x
· u
0
(x)) −1 < x < 1 u ∈
˚
C
1
[−1; 1]
Lu = −
d
dx
(x
2
u
0
(x)) − u(x) 1 < x < 2 u ∈
˚
C
1
[1; 2]
Lu = −
d
dx
((1+x
2
)u
0
(x))+sin u(x) −1 < x < 1 u ∈
˚
C
2
[−1; 1]
u(x) ∈
˚
C
1
(a; b]
J(u) =
Z
b
a
(p(x)u
02
(x) + ε(x) · u) dx,
p(x) ∈ C
1
(a, b), ε(x) ∈ C(a, b), p(x) > 0.
u(x)
inf
u∈D
J(u)
J(u) =
R
1
0
u
02
(x) dx D = {u(x) ∈
˚
C
1
[0; 1] kuk = 1}
J(u) =
R
π
0
u
02
(x) dx D = {u(x) ∈
˚
C
1
[0; π] kuk = 1}
J(u) =
R
π
0
u
02
(x) dx D = {u(x) ∈ C
1
[0; π] u
0
(0) = u
0
(π) = 0}