Modeling in Cellular Biomechanics 16-13
Dembo, M. and Harlow, F. Cell motion, contractile networks, and the physics of interpenetrating reactive
flow, Biophys. J., 50, 109, 1986.
Dembo, M., Torney, D.C., Saxaman, K. et al. The reaction-limited kinetics of membrane-to-surface adhe-
sion and detachment, Proc. R. Soc. Lond. B, 234, 55, 1988.
Discher, D.E., Boal, D.H., and Boey, S.K.Simulation of theerythrocytecytoskeleton at largedeformation. II.
Micropipette aspiration, Biophys. J., 75, 1584, 1998.
Dong, C.and Lei,X.X. Biomechanics of cell rolling: shear flow, cell-surfaceadhesion, and cell deformability,
J. Biomech., 33, 35, 2000.
Elston, T.C. and Oster, G., Protein turbines! The bacterial flagellar motor, Biophys. J., 73, 703, 1996.
Evans, E.A. Bending resistance and chemically induced moments in membrane bilayers, Biophys. J., 14,
923, 1974.
Evans, E.A. Minimum energy analysis of membrane deformation applied to pipet aspiration and surface
adhesion of red blood cells, Biophys. J., 30, 265, 1980.
Evans, E.A. Detailed mechanics of membrane–membrane adhesion and separation. I. Continuum of
molecular cross-bridges, Biophys. J., 48, 175, 1985.
Evans, E.A. and Skalak, R. Mechanics and Thermodynamics of Biomembranes, CRC Press, Boca Raton, FL,
1980.
Fabry, B., Maksym, G.N., Butler J.P. et al. Scaling the microrheology of living cells, Physiol. Rev. Lett., 87,
148102, 2001.
Guilak, F., Tedrow, J.R., and Burgkart, R. Viscoelastic properties of the cell nucleus, Biochem. Biophys. Res.
Commun., 269, 781, 2000.
Hammer, D.A. and Apte, S.M. Simulation of cell rolling and adhesion on surfaces in shear-flow — general
results and analysis of selectin-mediated neutrophil adhesion, Biophys. J., 63, 35, 1992.
Hammer, D.A. and Lauffenburger, D.A.A dynamicalmodel for receptor-mediated cell adhesion to surfaces,
Biophys. J., 52, 475, 1987.
Helfrich, W., Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforsch., C28,
693, 1973.
Hochmuth, R.M. Micropipette aspiration of living cells, J. Biomech., 33, 15, 2000.
Jean, R.P., Chen, C.S., and Spector, A.A. Finite element analysis of the adhesion — cytoskeleton–nucleus
mechano transduction pathway during endothelial cell rounding, axisymmetric model, J. Biomech.
Eng., 127, 594, 2005.
Jean, R.P., Gray, D.S., Spector, A.A. et al. Characterization of the nuclear deformation caused by changes
in endothelial cell shape, J. Biomech. Eng., 126, 552, 2004.
Kan, H.-C., Udaykumar, H.S., Shyy, W., and Vigneron, P., Tran-Son-Tay, R., Effects of nucleus on leukocyte
recovery. Ann. Biomed. Eng., 27, 648, 1999a.
Kan, H.-C., Udaykumar, H.S., Shyy, W. et al. Numerical analysis of the deformation of an adherent drop
under shear flow, J. Biomech. Eng., 121, 160, 1999b.
Karcher, H., Lammerding, J., Huang, H. et al. A three-dimensional viscoelastic model for cell deformation
with experimental verification, Biophys. J., 85, 3336, 2003.
Mogilner, A. and Edelstein-Keshet, L. Regulation of actin dynamics in rapidly moving cells: a quantitative
analysis, Biophys. J., 83, 1237, 2002.
Mogilner, A., Elston, T.C., Wang, H. et al. Switching in the bacterial flagellar motor, in Computational Cell
Biology, Fall, C.P., Marland, E.S., Wagner, J.M. et al. (Eds.), Springer, New York, 2002, chap. 13.
Mogilner, A. and Oster, G. Polymer motors: pushing out the front and pulling up the back, Curr. Biol., 13,
R721, 2003.
N’Dri, N.A., Shyy, W., and Tran-Son-Tay, R. Computational modeling of cell adhesion and movement
using a continuum-kinetics approach. Biophys. J., 85, 2273, 2003.
Nelson, C.M., Jean, R.P., and Tan, J.L. Emerging patterns of growth controlled by multicellular form and
mechanics, Proc. Natl. Acad. Sci. USA, 102, 11594, 2005.