13-12 Biomechanics
[10] Kiani M.F., Pries A.R., Hsu L.L., Sarelius I.H., and Cokelet G.R. Fluctuations in microvascular
blood flow parameters caused by hemodynamic mechanisms. Am. J. Physiol. 266: H1822–H1828,
1994.
[11] Discher D.E. New insights into erythrocyte membrane organization and microelasticity. Curr. Opin.
Hematol. 7: 117–122, 2000.
[12] Secomb T.W. Mechanics of red blood cells and blood flow in narrow tubes. In Modeling and Simu-
lation of Capsules and Biological Cells, Pozrikidis C. (Ed.), Boca Raton, FL, Chapman & Hall/CRC,
2003, pp. 163–196.
[13] Desjardins C. and Duling B.R. Heparinase treatment suggests a rolefor the endothelial cellglycocalyx
in regulation of capillary hematocrit. Am. J. Physiol. 258: H647–H654, 1990.
[14] Pries A.R., Secomb T.W., and Gaehtgens P. The endothelial surface layer. Pflugers Arch. 440: 653–666,
2000.
[15] Secomb T.W., Hsu R., and Pries A.R. Blood flow and red blood cell deformation in nonuniform
capillaries: effects of the endothelial surface layer. Microcirculation 9: 189–196, 2002.
[16] Schmid-Schonbein G.W. Biomechanics of microcirculatory blood perfusion. Ann. Rev. Biomed. Eng.
1: 73–102, 1999.
[17] Schmid-Schonbein G.W. and Granger D.N. Molecular Basis for Microcirculatory Disorders. Springer-
Verlag, Berlin, 2003.
[18] Lipowsky H.H. Microvascular rheology and hemodynamics. Microcirculation 12: 5–15, 2005.
[19] Bishop J.J., Nance P.R., Popel A.S., Intaglietta M., and Johnson P.C. Effect of erythrocyte aggregation
on velocity profiles in venules. Am. J. Physiol. Heart Circ. Physiol. 280: H222–H236, 2001.
[20] Ellsworth M.L. and Pittman R.N. Evaluation of photometric methods for quantifying convective
mass transport in microvessels. Am. J. Physiol. 251: H869–H879, 1986.
[21] Das B., Enden G., and Popel A.S. Stratified multiphase model for blood flow in a venular bifurcation.
Ann. Biomed. Eng. 25: 135–153, 1997.
[22] Baskurt O.K. and Meiselman H.J. Blood rheology and hemodynamics. Semin. Thromb. Hemost. 29:
435–450, 2003.
[23] Cabel M., Meiselman H.J., Popel A.S., and Johnson P.C. Contribution of red blood cell aggregation
to venous vascular resistance in skeletal muscle. Am. J. Physiol. 272: H1020–H1032, 1997.
[24] Ley K. The role of selectins in inflammation and disease. Trends Mol. Med. 9: 263–268, 2003.
[25] Woldhuis B., Tangelder G.J., Slaaf D.W., and Reneman R.S. Concentration profile of blood platelets
differs in arterioles and venules. Am. J. Physiol. 262: H1217–H1223, 1992.
[26] Tailor A., Cooper D., and Granger D. Platelet–vessel wall interactions in the microcirculation.
Microcirculation 12: 275–285, 2005.
[27] Jadhav S., Eggleton C.D., and Konstantopoulos K. A 3-D computational model predicts that cell
deformation affects selectin-mediated leukocyte rolling. Biophys. J. 88: 96–104, 2005.
[28] N’Dri N.A., Shyy W., and Tran-Son-Tay R. Computational modeling of cell adhesion and movement
using a continuum-kinetics approach. Biophys. J. 85: 2273–2286, 2003.
[29] Sun C. and Munn L.L. Particulate nature of blood determines macroscopic rheology: a 2-D lattice
Boltzmann analysis. Biophys. J. 88: 1635–1645, 2005.
[30] Pries A.R., Secomb T.W., and Gaehtgens P. Biophysical aspects of blood flow in the microvasculature.
Cardiovasc. Res. 32: 654–667, 1996.
[31] Skalak T.C. Angiogenesis and microvascular remodeling: a brief history and future roadmap.
Microcirculation 12: 47–58, 2005.
[32] Baish J.W. and Jain R.K. Fractals and cancer. Cancer Res. 60: 3683–3688, 2000.
[33] Mulivor A.W. and Lipowsky H.H. Inflammation- and ischemia-induced shedding of venular glyco-
calyx. Am. J. Physiol. Heart Circ. Physiol. 286: H1672–H1680, 2004.
[34] Platts S.H. and Duling B.R. Adenosine A3 receptor activation modulates the capillary endothelial
glycocalyx. Circ. Res. 94: 77–82, 2004.
[35] Weibel E.R. and Hoppeler H. Exercise-induced maximal metabolic rate scales with muscle aerobic
capacity. J. Exp. Biol. 208: 1635–1644, 2005.