Modern Industrial Microbiology and Biotechnology
The first meaning relates to microbial physiology. In strict physiological terms,
fermentation is defined in microbiology as the type of metabolism of a carbon source in
which energy is generated by substrate level phosphorylation and in which organic
molecules function as the final electron acceptor (or as acceptors of the reducing
equivalents) generated during the break-down of carbon-containing compounds or
catabolism. As is well-known, when the final acceptor is an inorganic compound the
process is called respiration. Respiration is referred to as aerobic if the final acceptor is
oxygen and anaerobic when it is some other inorganic compound outside oxygen e.g
sulphate or nitrate.
The second usage of the word is in industrial microbiology, where the term
‘fermentation’ is any process in which micro-organisms are grown on a large scale, even
if the final electron acceptor is not an organic compound (i.e. even if the growth is carried
out under aerobic conditions). Thus, the production of penicillin, and the growth of yeast
cells which are both highly aerobic, and the production of ethanol or alcoholic beverages
which are fermentations in the physiological sense, are all referred to as fermentations.
The third usage concerns food. A fermented food is one, the processing of which micro-
organisms play a major part. Microorganisms determine the nature of the food through
producing the flavor components as well deciding the general character of the food, but
microorganisms form only a small portion of the finished product by weight. Foods such
as cheese, bread, and yoghurt are fermented foods.
1.5 ORGANIZATIONAL SET-UP IN AN INDUSTRIAL
MICROBIOLOGY ESTABLISHMENT
The organization of a fermentation industrial establishment will vary from one firm to
another and will depend on what is being produced. Nevertheless the diagram in Fig. 1.1
represents in general terms the set-up in a fermentation industry.
The culture usually comes from the firm’s culture collection but may have been sourced
originally from a public culture collection and linked to a patent. On the other hand it
may have been isolated ab initio by the firm from soil, the air, the sea, or some other natural
body. The nutrients which go into the medium are compounded from various raw
materials, sometimes after appropriate preparation or modification including
saccharification as in the case of complex carbohydrates such as starch or cellulose. An
inoculum is first prepared usually from a lyophilized vial whose purity must be checked
on an agar plate. The organism is then grown in shake flasks of increasing volumes until
about 10% of the volume of the pilot fermentor is attained. It is then introduced into pilot
fermentor(s) before final transfer into the production fermentor(s) (Fig. 1.2).
The extraction of the material depends on what the end product is. The methods are
obviously different depending on whether the organism itself, or its metabolic product is
the desired commodity. If the product is the required material the procedure will be
dictated by its chemical nature. Quality control must be carried out regularly to ensure
that the right material is being produced. Sterility is important in industrial microbiology
processes and is maintained by various means, including the use of steam, filtration or by
chemicals. Air, water, and steam and other services must be supplied and appropriately
treated before use. The wastes generated in the industrial processes must also be disposed