234 Part B Automation Theory and Scientific Foundations
12.8 Conclusions
In this chapter we have discussed most of the
important learning mechanisms reported in the lit-
erature pertaining to learning automata (LA). Af-
ter briefly stating the concepts of fixed structure
stochastic LA, the families of continuous and dis-
cretized variable structure stochastic automata were
discussed. The chapter, in particular, concentrated on
the more recent results involving continuous and dis-
cretized pursuit and estimator algorithms. In each
case we have briefly summarized the theoretical
and experimental results of the different learning
schemes.
References
12.1 M.L. Tsetlin: On the behaviour of finite automata
in random media, Autom. Remote Control 22,1210–
1219 (1962), Originally in Avtom. Telemekh. 22,
1345–1354 (1961), in Russian
12.2 M.L. Tsetlin: Automaton Theory and Modeling of
Biological Systems (Academic, New York 1973)
12.3 K.S. Narendra, M.A.L. Thathachar: Learning Au-
tomata (Prentice-Hall, Upper Saddle River 1989)
12.4 R.R. Bush, F. Mosteller: Stochastic Models for
Learning (Wiley, New York 1958)
12.5 C.R. Atkinson, G.H. Bower, E.J. Crowthers: An Intro-
duction to Mathematical Learning Theory (Wiley,
New York 1965)
12.6 V.I. Varshavskii, I.P. Vorontsova: On the behavior
of stochastic automata with a variable structure,
Autom. Remote Control 24, 327–333 (1963)
12.7 M.S. Obaidat, G.I. Papadimitriou, A.S. Pomportsis:
Learning automata: theory, paradigms, and appli-
cations, IEEE Trans. Syst. Man Cybern. B 32, 706–709
(2002)
12.8 S. Lakshmivarahan: Learning Algorithms Theory
and Applications (Springer, New York 1981)
12.9 K. Najim, A.S. Poznyak: Learning Automata: Theory
and Applications (Pergamon, Oxford 1994)
12.10 A.S. Poznyak, K. Najim: Learning Automata and
Stochastic Optimization (Springer, Berlin 1997)
12.11 M.A.L.T. Thathachar, P.S. Sastry: Networks of
Learning Automata: Techniques for Online Stochas-
tic Optimization (Kluwer, Boston 2003)
12.12 S. Misra, B.J. Oommen: GPSPA: a new adaptive al-
gorithm for maintaining shortest path routing trees
in stochastic networks, Int. J. Commun. Syst. 17,
963–984 (2004)
12.13 M.S. Obaidat, G.I. Papadimitriou, A.S. Pomportsis,
H.S. Laskaridis: Learning automata-based bus ar-
bitration for shared-medium ATM switches, IEEE
Trans. Syst. Man Cybern. B 32, 815–820 (2002)
12.14 B.J. Oommen, T.D. Roberts: Continuous learning
automata solutions to the capacity assignment
problem, IEEE Trans. Comput. C 49, 608–620 (2000)
12.15 G.I. Papadimitriou, A.S. Pomportsis: Learning-
automata-based TDMA protocols for broadcast
communication systems with bursty traffic, IEEE
Commun. Lett. 3(3), 107–109 (2000)
12.16 A.F. Atlassis, N.H. Loukas, A.V. Vasilakos: The use of
learning algorithms in atm networks call admission
control problem: a methodology, Comput. Netw.
34, 341–353 (2000)
12.17 A.F. Atlassis, A.V. Vasilakos: The use of reinforce-
ment learning algorithms in traffic control of high
speed networks. In: Advances in Computational
Intelligence and Learning (Kluwer, Dordrecht 2002)
pp. 353–369
12.18 A. Vasilakos, M.P. Saltouros, A.F. Atlassis,
W. Pedrycz: Optimizing QoS routing in hierarchi-
cal ATM networks using computational intelligence
techniques, IEEE Trans. Syst. Sci. Cybern. C 33,297–
312 (2003)
12.19 F. Seredynski: Distributed scheduling using simple
learning machines, Eur. J. Oper. Res. 107,401–413
(1998)
12.20 J. Kabudian, M.R. Meybodi, M.M. Homayounpour:
Applying continuous action reinforcement learn-
ing automata (CARLA) to global training of hidden
Markov models, Proc. ITCC’04 (Las Vegas 2004)
pp. 638–642
12.21 M.R. Meybodi, H. Beigy: New learning automata
based algorithms for adaptation of backpropaga-
tion algorithm parameters, Int. J. Neural Syst. 12,
45–67 (2002)
12.22 C. Unsal, P. Kachroo, J.S. Bay: Simulation study of
multiple intelligent vehicle control using stochastic
learning automata, Trans. Soc. Comput. Simul. Int.
14, 193–210 (1997)
12.23 B.J. Oommen, E.V. de St. Croix: Graph partitioning
using learning automata, IEEE Trans. Comput. C 45,
195–208 (1995)
12.24 G. Santharam, P.S. Sastry, M.A.L. Thathachar: Con-
tinuous action set learning automata for stochastic
optimization, J. Franklin Inst. 331(5), 607–628
(1994)
12.25 B.J. Oommen, G. Raghunath, B. Kuipers: Parameter
learning from stochastic teachers and stochastic
compulsive liars, IEEE Trans. Syst. Man Cybern. B
36,820–836(2006)
12.26 V. Krylov: On the stochastic automaton which is
asymptotically optimal in random medium, Au-
tom. Remote Control 24, 1114–1116 (1964)
Part B 12