108
по условию прочности, так как он больше.
4.5. Изгиб
Рассмотрим плоский поперечный изгиб. Это такой вид нагру-
жения, когда под действием внешних нагрузок из шести внутренних
силовых факторов в поперечном сечении стержня могут возникать
только два - изгибающий момент
z
M и поперечная сила
y
Q или из-
гибающий момент
y
M и поперечная сила
z
Q .
Изгиб называют чистым, если в поперечном сечении воз-
никает только изгибающий момент. Стержень, работающий на
изгиб, называют балкой.
4.5.1. Эпюры внутренних силовых факторов
Для определения положения наиболее нагруженного сечения
стержня при изгибе, как и при других видах нагружения, необходимо
иметь эпюры внутренних силовых факторов. Рассмотрим балку на двух
опорах (см. рис. 4.24,а), нагруженную сосредоточенной внешней силой
(активной) F. Собственный вес балки учитывать не будем.
Согласно порядку построения эпюры (см. параграф 4.2.1) прежде
всего необходимо определить все внешние нагрузки, действующие на
стержень.
В сечении А расположена шарнирно-неподвижная опора, создаю-
щая в общем случае нагружения две реактивных составляющих R
А
и Н
А
,
а в сечении В имеем шарнирно-подвижную опору, которая создает одну
реактивную составляющую R
В
. Отмеченные опорные реакции опреде-
лим из уравнений равновесия балки:
;0
A
HX
;0
baRaFm
BA
.0
BA
RFRY
Решая данные уравнения совместно, получаем
HA=0;
;
aF
R
B
+
= .
bF
R
A
+
=
Для проверки правильности определения реакций необходимо за-
писать еще одно уравнение равновесия, например
,0)(
bFbaRm
Aв
и, подставив в него найденные значения реакций, убедиться в его вы-
полнении.