References
![
Introduction
Resea rch
Nirenberg,
M W. and Leder, P.
(19641.
The effect
of trinucleotides upon
the binding of sRNA
to
ribosomes. Science
145, 1399-1407.
Nirenberg, M. W. and Matthaei,
H.
J.
(
196 I
).
The
dependence
of cell-free
protein
synthesis
in
E
coli tpon
naturally occurring or synthetic
polyribonucieotides.
Proc. Natl
Acad-
Sci.
USA
47, r588-t602.
f[
Codon-Anticodon
Recognition
Invotves
Wobbting
Resea rc h
Crick,
F. H
C.
(1966).
Codon-anticodonpairing:
the wobble
hypothesis. J Mol. Biol. 19,
548-555.
Etr
rxl\As Are
Processeo from ronger
Precu rso rs
Review
Hopper, A. I(. and Phizicky,
E. M.
(2003).
IRNA
transfers
to the limelight. Genes Dev.
17,
I
62-t 80.
lfl
IRNA Contains
Modified Bases
Reviews
Hopper, A. I(. and
Phizicky, E. M.
(2003).
IRNA
transfers to the limelighr. Genes
Dev. 17,
l 62-l 80.
!!l
Modjfied Bases
Affect Anticodon-Codon
Pairi
ng
Review
Bjork, G. R.
(
I 987
)
. Tlansfer RNA modification.
Annu. Rev. Biochem.56,
26j-287
![
There Are
Sporadic
Alterations
of the Universa[
Code
Reviews
Fox, T. D.
(1987).
Natural
variation in the
genetic
code.
Annu. Rev.
Genet
21,
67-91.
Osawa, S et al.
(19921.
Recent
evidence
for
evolu-
tion of
the
genetic
code. Microbiol Rev. 56,
229-264.
Novel Amino Acids
Can
Be Inserted
at Certain Stop Codons
Bock, A.
(1991
).
Selenoprotein synthesis: an
expansion of the
genetic
code.
Trends Biochem
Sci. 16, 46)-467.
Ibba, M. and
Soll,
D.
(2004).
Aminoacyl-tRNAs:
setting the
limits
of the
genetic
code. Genes
Dev. 18,731-738.
CHAPTER 9 Using
the Genetic Code
@
Reviews
Resea
rc h
Fagegaltier,
D.,
Hubert,
N.,
Yamada,
I(., Mizutani,
T., Carbon,
P., and
Iftol, A.
(2000).
Characteri-
zation of
mSelB, a
novel mammalian elonga-
tion
factor for selenoprotein
translation.
EMBO J.19,4796-4805.
Hao, B., Gong, W.,
Ferguson,
T. I(.,
James, C.
M.,
ICzycki, J. A., and Chan,
M. K.
(2002).
A
new
UAG-encoded
residue
in
the
structure of a
methanogen
methyltransf erase. Science
296,
1462-t466.
Srinivasan,
G., James,
C. M., and
Iftzycki,
J.
A.
(2002).
Pyrrolysine
encoded by UAG
in
Archaea: charging of a UAG-decoding
special-
ized IRNA. Science
296,
1459-1462.
tRNAs
Are Charged
with Amino Acids by
Synthetases
Review
Schimmel,
P.
(I989).
Parameters
for
the
molecular
recognition of
tRNAs. Biochemistry
28,
27 47-27 59.
Aminoacyt-tRNA Synthetases
Fa[[
into Two Grouos
Review
Schimmel,
P.
(I987).
Aminoacyl-tRNA syn-
thetases:
general
scheme of structure-function
relationships on the
polypeptides
and
recog-
nition of tRNAs. Annu.
Rev. Biochem.56,
r25-r58.
Res ea rc h
Rould, M. A. et al.
(1989).
Structure of
E. coli
glut-
aminyl-IRNA
synthetase complexed with
1p54cln and
ATP at 28A resolution. Scierce
246, rr)5-1142.
Ruff
,
M. et al.
(
l99l
).
Class
II
aminoacyl IRNA
synthetases:
crystal structure of
yeast
aspartyl-
tRNA synthetase
complexes with TRNAA'p. Sci
ence
252, 1682-1689.
Synthetases
Use Proofreading to Improve
Accuracy
Review
Jakubowski,
H.
and
Goldman, E.
(19921.
Editing of
errors in selection of
amino acids for
protein
synthesis. Microbiol
Rev.
56,
412-429.
Resea rc h
Dock-Bregeon, A., Sankaranarayanan, R., Romby,
P., Caillet, J., Springer,
M., Rees,
B., Franck-
lyn,
C. S.,
Ehresmann, C., and Moras, D.
(2000).
Transfer
RNA-mediated
editing in
threonyl-tRNA synthetase.
The
class II solu-
tion to the double discrimination oroblem. Cel/
103,877-884.
Hopfield, J. J.
(1974lr.I(ineticproofreading:
a new
mechanism
for reducing
errors
in
biosynthetic
processes
requiring high specificiry. Proc. Natl.
Acad. Sci. USA7l,
4lj5-41)9.
276