__
__
,
__
'-.C"--';,.c.:..
'--'-''-'--'-~_
.",;,-
.........
,.,;;
••.
:
',',','
...
';'.'.,
''y!'
'J')'
'doc
_~~
~~.
·
..
'
p
....
~
.
~
~
.'
,--"'
C
CB09:CTBA
OllTHMAJIbHOrO
YllPABJIEHHP.:
[rJI.6
164
Pernall
3TY
sa,n;a'IY, nOJIOlRIlB g = 10, aaxo,n;HM:
l~
= 0,1116;
l~
=~0,0558;
l~
= 0;
l~
= 0,0888;
pO
= 0,0944.
Tor,n;a
HS
(21.35) nOJIY'IaeM, 'ITO
° 0,0558
(1
- 2t)
u (t) -
::--:-:-:---=r='==========
I . - 0,0944 l'O,0124t
2
-
0,0124t
-+
0,0120
(21.39}
"j
o 0,0888
u
2
tt) = 0,0944 YO,0124t2 _ 0,0124t +0,0120
Ha
pHC. 21.4
Hso6pameaa
OllTHMam,aall TpaeKTopHll
xO
(t) =
{x~
(t),
x~
(t)}
TO'lKH;
;t:J;JIll
aarJIll,n;aOCTH Ha
lITOM
pHcyHKe
npe,n;CTaBJIeHO
TaKme ynpaBJIeHHe
u
O
=
{u~,
u~},
COOTBeTCTBYIOm;ee
pas-
JIH'IHLIM TO'lKaM nyTlil. RpOMe
Toro,
.x
J
MacrnTa6bI
no
OCHM
Xl
H X
2
BbI6pa-
HbI paSJIH'IHbIMH.
§ 22. YnpaBJIeUHe B cJIy'lae
_.
RBa3HJIHUeHUOro
oi'h.eKTa
,
.
-/
.x,
Co,n;eplliaHHeM
HaCToam;eH
MOHorpa<p1u1
aBJmeTCa
HCCJle-
,n;OBaHHeaa,n;a~
06
ynpaBJleHHH
JlHHeHHhIMH
06'beKTaMH.
06m;ee
HCCJle,n;OBaHHe
np06JleMbI
yn-
PRC.
21.4.
paBJleHHa
B
HeJlHHeHHbIX
CH-
CTeMax
BbIXO,n;HT ,n;aJleKO
aa
paMKII
,n;aHHoH
KHlIrH.
O,n;HaKo,
~T06bI
OTMeTIITb
CBaab
paccMaTpllBae-
MblX
HaMil
JlIlHeHHbIX
np06JleM
H
HCnOJlbayeMbIx
MeTo,n;OB C
aa,n;a~aMH
60Jlee
06m;ero
po,n;a,
nOJleaHO
06Cy,n;HTb
BoaMOlliHbIH
nepexo,n;
01'
Ha-
mHX
CJly~aeB
K
HeJlHHeHHbIM
cHTya~HaM.
IIepBhIM
marOM
TaKoro
rre-
pexo,n;a
aBJlaeTCa
HCCJle,n;OBaHHe
KBaaHJlHHeHHOH
CHCTeMbI,
ypaB-
HeHHa
,n;BII}KeHHa
KOTOPOH
OTJlH~aIOTCH
01'
ypaBHeHHH
mmeHHbIX
JlHmb
MaJlhIMH
HeJlHHeHHbIMH
,n;06aBKaMII.
YKaaaHHbIH
KBaaHJlIlHeHHbIH
CJly'laH
II
COCTaBJlaeT npe,n;MeT
,n;aHHoro
naparpa<pa.
IIpll
3TOM ,n;JIa
onpe,n;eJleHHOCTII
MbI
OrpaHH'lHMCa
Jlllmb
aa,n;a'leH,
B
KOTOpOH
pecyp-
CbI
ynpaBJleHHa
o~eHHBaIOTca
BeJlH'lIlHOH
x
[u]
BH,n;a (21.2).
IIMeHHo
no
3TOH
npll'lllHe
npe,n;JlaraeMbIH
a,n;eCb
MaTepHaJl
CJle,n;yeT
cpaay
aa
§ 21, r,n;e
6bIJla
Hay'leHa
COOTBeTCTBYIOm;aa
JlIlHeHHaa
np06Jlei1a.
B
,n;pyrHx
TlInH'lHblX
cJlyqaax
x
[u]
(HJlH
x
[dU])
nepexo,n;
01'
JlHUeHHOH
clITya~IIH
K
clITya~HH
KBaaHJlIlHeHHOH
ocym;ecTBJlaeTCa
no
aHaJJ;O-
rll'luoMy
IIJlaHY
H
n03ToMY
Ha
UIIX
Mbl
AaJlee
OCTaHaBJlIlBaTbCa
He
6y-
p;eM.
OTMeTIIM
Jlllmb,
~ITO
II
B
Ima3l1JlIIHeHHOM
CJIy'lae
Hall60Jlee
yrw6-
HOH ,n;Jla
KOHl\peTHblx
Bbl'lIlC.1IeUHH
Ol\aabIBaeTca
BeJIlI'IIIHa
x
[uJ
BH-
Aa
(18.1).
§
22]
ynp
ABJIEHHE
RBAaHJIHHE9:HbIM
OB'I>ERTOM
165
IITaK,
nycTb
nOBeAeHHe
ynpaBJlaeMOH
CHCTeMbI
onllCbIBaeTca
ypaBHeHlleM
1; = f (t,
x)
+g (t,
x)u.
(22.1)
3,n;eCb x =
{XI'oo"X
n
} -
n-MepHbIH
BeKTOp
<paaOBbIX
Koopp;HHaT
06'I>eKTa;
f (t, x) H g (t, x)
--
n-MepHbIe
BeKTOp-<pYHK~IIH;
U -
CKa-
JlapHOe
yrrpaBJlHIOm;ee
Boap;eiicTBlIe.
By,n;eM
npep;nOJlaraTb,
'ITO
f (t, x)
H g (t,
x)
HenpepbIBHbI
no
t
Ha
paCCMaTpllBaeMOM
OTpeaKe
BpeMeHll
Ita,
tfJl
II
aBJlaIOTCa
aHaJlHTH'IeCKIIMH
<pYHK~lIaMII
nepeMeHHbIX
Xi
B
HeKOTOpOH
OKpeCTHOCTII
TO'lKH
x = 0,
T.
e.
npllMeM,
'ITO
3TH
<PYHK-
~IIH
paaJlararoTca
B CXO,n;am;HeCa
CTeneHHbIe
paAbI
00
00
f (t, x) =
~
t<m)
(t, x), g (t, x) =
~
g(m)
(t,
x),
(22.2)
m=l
m=O
r~e
j<m)
H
g(m)
- <pOPMbI
m-ro
nopaAl\a
no
Xi'
,I.J;onycTHM,
'ITO
BeJlll-
'1HHbI
Xi
(t)
MOlliHO
C'IHTaTb
p;OCTaTO'lHO
MaJlhIMlI
(HaCTOJlbKO
BO
Bca-
I\OM
CJly~ae,
~T06bI
CXOP;IIJlIlCb
paCCMaTpllBaeMble
HaMil
PH,n;bI).
IIHa-
'Ie
rOBopa,
B
AaHHOM
CJly'lae
pe'lb
lI,n;eT
06
ynpaBJleHHII
06'beKTOM
(22.1)
Jlllmb
B OKpeCTHOCTH
HeKOToporo
ero
p;BlIllieHlIa,
npll'leM
BeK-
TOp
x
(t)
IIMeeT
KaK
paa
CMbICJl
OTKJlOHeHlm
<paaOBoro
Bel\TOpa
01'
31'0-
ro
,n;BHllieHHa,
KOTopoe
B
KOOpp;IIHaTaX
Xi
aanllCblBaeTca
TaKHM
o6paaoM
B BHp;e
Xi
(t)
= °(i =
1,oo.,n)
(CM.
no
nOBOp;y
COCTaBJleHIIH
TaKIIX
ypaBHeHHH
B § 3).
Hac
6yp;eT
HHTepeCOBaTb
BbI60p
ynpaBJleHHa
U (t),
KOTopoe
npllBOAHT
06'beKT
K
yKaaaHHoMy
p;BHllieHHIO
(IIJlIl
K
COCToa-
HHIO
paBHoBeclIa)
x = 0.
MbI
OrpaHH'IIIBaeMCa
npH
3TOM
CKaJlapUbIM
ynpaBJle.HHeM
Jlllmb
C
~eJlbIO
ynpom;eHHa
BbIKJlap;OK.
IITaK,
CeH'IaC
,n;Jla CHCTeMbI (22.1), (22.2)
MbI
YKallieM
npocToii:
cnoco6
nOCJlep;OBa-
TeJlbHorO
nocTpoeHHa
ynpaBJleHlIa
u (t),
KOTopoe
OKaabIBaeTca
6Jllla-
KHM
K
OnTHMaJlbHOMY
(B CMbICJle
aap;a'lH
13.1)
rrpll
KpaeBbIX
YCJlOBHaX
x
(ta)
= x
ilt
H X
(tfJ)
=
x(3
= 0,
Korp;a
HHTeHCIIBHOCTb
x
[a]
onpeAe-
JleHa
paBeHCTBOM
(21.2)
II
Ha~aJlbHbIe
BoaMym;eHHJl
,n;OCTaTO'lHO
Ma-
JlbI.
IIpH
3TOM
6yp;eM
onllpaTbca
Ha
lIaBeCTHoe
HaM
lIa
§
21
pemeHlIe
aHaJlOrH'lHOii
aaAa'l1l
p;Jla
JlHHeHH@
CIICTeMbI
nepBoro
np1l6JlH}HeHHa
1; = A (t) x +b (t) u, (22.3)
r,n;e
A (t) x =
{fi
l
)
(t,
x),
,
f~)
(t, x)},
b (t) =
{gin)
(t), ,
g~)
(t)}.
,ll;JlH
,n;aJlbHeiimero
y,n;06HO
npep;'baBIITb
O,n;HO
Tpe60BaHue
K
Munu-
Ma/wnoa
<PYHI\~IIH
h
O
('t),
KOTopaa
nOJly'laeTca
npll
pelTIeHIIJI
Yl\aaaH-
HOH
JlHHeHHOH
aap;a'lll
no
npaBIIJlY
JlwnU.Mw,ca 17.1.
QT06hI
C<POPMY-
JlHpOBaTb
31'0
Tpe60BaHlIe,
npe,n;nOJlOmHM
,n;Jla onpe,n;eJleHHOCTJI,
'ITO
B:eKTOp c (15.2) yP;OBJlCTBOpHeT YCJlOj:JHIQ
c~.=1=
0,
II,
CJle,n;OBaTeJlbHO,