110 7 A Course in Abstract Algebra Inspired by History
make the course unreasonably difficult. The course is quite challenging as it is.
And its objectives can be met using secondary sources.
(g) The course tries to deal with mathematical ideas in addition to the standard
algebraicfare:the“why”and“whatfor”inadditiontothe“how.”Thisisreflected
intheassignments.Thus,asidefrombeingaskedtodotheusualtypesofproblems,
for example, to show that the additive inverse in a ring is unique, students are
expected to write “mini-essays” involving both historical and technical matters,
for example, to discuss De Morgan’s contribution to algebra and how it advanced
abstract algebraic thinking.
To read independently in the mathematical literature, and to write about what
they have read, are tasks which mathematics students are not—but should become—
accustomed to.
References
1. W. W. Adams and L. J. Goldstein, Introduction to Number Theory, Prentice-Hall, 1976.
2. G. Birkhoff, Current trends in algebra, Amer. Math. Monthly 1973, 80: 760–782.
3. G. Birkhoff and S. MacLane, A Survey of Modern Algebra, 5th ed.,A K Peters, 1996.
4. D. M. Burton and D. H. Van Osdol, Toward the definition of an abstract ring, in Learn
from the Masters, ed. by F. Swetz et al, Math. Assoc. of America, 1995, pp. 241–251.
5. A. Clark, Elements of Abstract Algebra, Dover, 1984.
6. R. A. Dean, Elements of Abstract Algebra, Wiley, 1966.
7. A. Fraenkel, Über die Teiler der Null und die Zerlegung von Ringen, Jour. für die Reine
und Angew. Math. 1914, 145: 139–176.
8. L. J. Goldstein, Abstract Algebra: A First Course, Prentice-Hall, 1973.
9. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Univ.
Press, 1938.
10. I. N. Herstein, Topics in Algebra, Blaisdell, 1964.
11. D. Hilbert, Über den Zahlbegriff, Jahresb. der Deut. Math. Verein. 1900, 8: 180–184.
12. A. Jones, S. A. Morris, and K. R. Pearson, Abstract Algebra and Famous Impossibilities,
Springer-Verlag, 1991.
13. I. L. Kantor and A. S. Solodovnikov, Hypercomplex Numbers, Springer-Verlag, 1989.
(Translated from the Russian by A. Shenitzer.)
14. I. Kleiner, The roots of commutative algebra in algebraic number theory, Math. Magazine
1995, 68: 3–15.
15. I. Kleiner,Thinking the unthinkable:The story of complex numbers (with a moral), Math.
Teacher 1988, 81: 583–592.
16. M. Kline, Mathematics in Western Culture, Oxford Univ. Press, 1964.
17. N. H. McCoy and G. J. Janusz, Introduction to Modern Algebra, Wm. C. Brown, 1992.
18. H.PollardandH.G.Diamond,TheTheoryofAlgebraicNumbers,Math.Assoc.ofAmerica,
1975.
19. H.Pycior,George Peacock and theBritishoriginsofsymbolicalalgebra, Hist. Math. 1981,
8: 23–45.
20. I. Richards, An application of Galois theory to elementary arithmetic, Advances in Math.
1974, 13: 268–273.
21. F. Richman, Number Theory: An Introduction to Algebra, Brooks/Cole, 1971.