
Separators in Graphs S 817
titioning by a balanced separator algorithm leads to
polylogarithmic approximation algorithms for crossing
number, minimum layout area and other problems.
Treewidth and pathwidth. Bodlaender et al. [9]showed
how to approximate treewidth within O(log n)and
pathwidth within O(log
2
n) by using balanced node
separators.
Bisection. Feige and Krauthgamer [13]gavean
O(˛ log n) approximation for the minimum bisection,
using any ˛-approximation algorithm for sparsest cut.
Experimental Resul t s
Lang and Rao [21] compared a variant of the sparsest cut
algorithm from [24] to methods used in graph decompo-
sition for VLSI design.
Cross References
Fractional Packing and Covering Problems
Minimum Bisection
Sparsest Cut
Recommended Reading
Further details and pointers to additional results may be
found in the survey [28].
1. Agrawal, A., Klein, P.N., Ravi, R.: Cutting down on fill using
nested dissection: provably good elimination orderings. In:
Brualdi, R.A., Friedland, S., Klee, V. (eds.) Graph theory and
sparse matrix computation. IMA Volumes in mathematics and
its applications, pp. 31–55. Springer, New York (1993)
2. Arora, S., Hazan, E., Kale, S.: O(
p
logn) approximation to spars-
est cut in
˜
O(n
2
) time. In: FOCS ’04: Proceedings of the 45th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS’04), pp. 238–247. IEEE Computer Society, Washington
(2004)
3. Arora, S., Kale, S.: A combinatorial, primal-dual approach to
semidefinite programs. In: STOC ’07: Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, pp. 227–
236. ACM (2007)
4. Arora, S., Lee, J.R., Naor, A.: Euclidean distortion and the spars-
est cut. In: STOC ’05: Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pp. 553–562. ACM
Press, New York (2005)
5. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric em-
beddings and graph partitioning. In: STOC ’04: Proceedings of
the thirty-sixth annual ACM symposium on Theory of comput-
ing, pp. 222–231. ACM Press, New York (2004)
6. Aumann, Y., Rabani, Y.: An (log ) approximate min-cut max-
flow theorem and approximation algorithm. SIAM J. Comput.
27(1), 291–301 (1998)
7. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts
in
˜
O(n
2
) time. In: STOC ’96: Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, pp. 47–55.
ACM Press, New York (1996)
8. Bhatt, S.N., Leighton, F.T.: A framework for solving vlsi graph
layout problems. J. Comput. Syst. Sci. 28(2), 300–343 (1984)
9. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Ap-
proximating treewidth, pathwidth, frontsize, and shortest
elimination tree. J. Algorithms 18(2), 238–255 (1995)
10. Bourgain, J.: On Lipshitz embedding of finite metric spaces in
Hilbert space. Israel J. Math. 52, 46–52 (1985)
11. Devanur, N.R., Khot, S.A., Saket, R., Vishnoi, N.K.: Integrality
gaps for sparsest cut and minimum linear arrangement prob-
lems. In: STOC ’06: Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pp. 537–546. ACM
Press, New York (2006)
12. Even,G.,Naor,J.S.,Rao,S.,Schieber,B.:Divide-and-conquer
approximation algorithms via spreading metrics. J. ACM 47(4),
585–616 (2000)
13. Feige, U., Krauthgamer, R.: A polylogarithmic approximation
of the minimum bisection. SIAM J. Comput. 31(4), 1090–1118
(2002)
14. Fleischer, L.: Approximating fractional multicommodity flow
independent of the number of commodities. SIAM J. Discret.
Math. 13(4), 505–520 (2000)
15. Garg, N., Könemann, J.: Faster and simpler algorithms for mul-
ticommodity flow and other fractional packing problems. In:
FOCS ’98: Proceedings of the 39th Annual Symposium on
Foundations of Computer Science, p. 300. IEEE Computer Soci-
ety, Washington (1998)
16. Karakostas, G.: Faster approximation schemes for fractional
multicommodity flow problems. In: SODA ’02: Proceedings of
the thirteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pp. 166–173. Society for Industrial and Applied Mathe-
matics, Philadelphia (2002)
17. Khandekar, R., Rao, S., Vazirani, U.: Graph partitioning using
single commodity flows. In: STOC ’06: Proceedings of the
thirty-eighth annual ACM symposium on Theory of comput-
ing, pp. 385–390. ACM Press, New York (2006)
18. Khot, S., Vishnoi, N.K.:The uniquegames conjecture, integrality
gap for cut problems and embeddability of negative type met-
rics into l
1
. In: FOCS ’07: Proceedings of the 46th Annual IEEE
Symposium on Foundations and Computer Science, pp. 53–
62. IEEE Computer Society (2005)
19. Klein,P.N.,Plotkin,S.A.,Stein,C.,Tardos,É.:Fasterapproxima-
tion algorithms for the unit capacity concurrent flow problem
with applications to routing and finding sparse cuts. SIAM J.
Comput. 23(3), 466–487 (1994)
20. Krauthgamer, R., Rabani, Y.: Improved lower bounds for em-
beddings into l
1
. In: SODA ’06: Proceedings of the seven-
teenth annual ACM-SIAM symposium on Discrete algorithm,
pp. 1010–1017. ACM Press, New York (2006)
21. Lang, K., Rao, S.: Finding near-optimal cuts: an empirical eval-
uation. In: SODA ’93: Proceedings of the fourth annual ACM-
SIAM Symposium on Discrete algorithms, pp. 212–221. Society
for Industrial and Applied Mathematics, Philadelphia (1993)
22. Leighton, F.T., Makedon, F., Plotkin, S.A., Stein, C., Stein, É.,
Tragoudas, S.: Fast approximation algorithms for multicom-
modity flow problems. J. Comput. Syst. Sci. 50(2), 228–243
(1995)
23. Leighton, T., Rao, S.: An approximate max-flow min-cut theo-
rem for uniform multicommodity flow problems with appli-
cations to approximation algorithms. In: Proceedings of the
29th Annual Symposium on Foundations of Computer Sci-
ence, pp. 422–431, IEEE Computer Society (1988)