
492 M Maximum Agreement Subtree (of 2 Binary Trees)
Recommended Reading
1. Andersson, G., Engebretsen, L., Håstad, J.: A new way to use
semidefinite programming with applications to linear equa-
tions mod p.J.Algorithms39, 162–204 (2001)
2. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric em-
beddings and graph partitioning. In: Proceedings of the 36th
Annual Symposium on the Theory of Computing (STOC),
Chicago 2004, pp. 222–231
3. Barahona, F.: On cuts and matchings in planar graphs. Math.
Program. 60, 53–68 (1993)
4. Blum, A., Konjevod, G., Ravi, R., Vempala, S.: Semi-definite re-
laxations for minimum bandwidth and other vertex-ordering
problems. Theor. Comput. Sci. 235, 25–42 (2000)
5. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualita-
tive information. In: Proceedings of the 44th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), Boston
2003, pp. 524–533
6. Chor, B., Sudan, M.: A geometric approach to betweeness.
SIAM J. Discret. Math. 11, 511–523 (1998)
7. Delorme, C., Poljak, S.: Laplacian eigenvalues and the maxi-
mum cut problem. Math. Program. 62, 557–574 (1993)
8.Delorme,C.,Poljak,S.:Theperformanceofaneigenvalue
bound in some classes of graphs. Discret. Math. 111, 145–156
(1993). Also appeared in: Proceedings of the Conference on
Combinatorics, Marseille, 1990
9. Feige, U., Schechtman, G.: On the optimality of the random
hyperplane rounding technique for MAX-CUT. Random Struct.
Algorithms 20(3), 403–440 (2002)
10. Frieze, A., Jerrum, M.R.: Improved approximation algorithms
for MAX-k-CUT and MAX BISECTION. Algorithmica 18, 61–77
(1997)
11. Goemans, M.X., Williamson, D.P.: Improved approximation al-
gorithms for maximum cut and satisfiability problems using
semidefinite programming. J. ACM 42, 1115–1145 (1995)
12. Goemans, M.X., Williamson, D.P.: Approximation algorithms for
MAX-3-CUT and other problems via complex semidefinite pro-
gramming. STOC 2001 Special Issue of J. Comput. Syst. Sci. 68,
442–470 (2004)
13. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and
its consequences in combinatorial optimization. Combinator-
ica 1, 169–197 (1981)
14. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms
and Combinatorial Optimization. Springer, Berlin (1988)
15. Halperin, E., Zwick, U.: A unified framework for obtaining
improved approximation algorithms for maximum graph bi-
section problems. Random Struct. Algorithms 20(3), 382–402
(2002)
16. Håstad, J.: Some optimal inapproximability results. J. ACM 48,
798–869 (2001)
17. Karger, D.R., Motwani, R., Sudan, M.: Improved graph color-
ing via semidefinite programming. J. ACM 45(2), 246–265
(1998)
18. Karloff, H.J.: How good is the Goemans-Williamson MAX CUT
algorithm? SIAM J. Comput. 29(1), 336–350 (1999)
19. Karp, R.M.: Reducibility Among Combinatorial Problems. In:
Complexity of Computer Computations, pp. 85–104. Plenum
Press, New York (1972)
20. Khot, S.: On the power of unique 2-prover 1-round games. In:
Proceedings of the 34th Annual Symposium on the Theory of
Computing (STOC), Montreal 2002, pp. 767–775
21. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapprox-
imability results for MAX CUT and other 2-variable CSPs? In:
Proceedings of the 45th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), Rome 2004, pp. 146–154
22. de Klerk, E., Pasechnik, D., Warners, J.: On approximate graph
colouring and MAX-k-CUT algorithms based on the function.
J. Combin. Optim. 8(3), 267–294 (2004)
23. Mahajan, R., Hariharan, R.: Derandomizing semidefinite pro-
gramming based approximation algorithms. In: Proceedings
of the 36th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), Milwaukee 1995, pp. 162–169
24. Mohar, B., Poljak, S.: Eigenvalues and the max-cut problem.
Czechoslov Math. J. 40(115), 343–352 (1990)
25. Newman, A.: A note on polyhedral relaxations for the maxi-
mum cut problem (2004). Unpublished manuscript
26. Poljak, S.: Polyhedral and eigenvalue approximations of the
max-cut problem. Sets, Graphs and Numbers. Colloqiua Math-
ematica Societatis Janos Bolyai 60, 569–581 (1992)
27. Poljak, S., Rendl, F.: Node and edge relaxations of the max-cut
problem. Comput. 52, 123–137 (1994)
28. Poljak, S., Rendl, F.: Nonpolyhedral relaxations of graph-bisec-
tion problems. SIAM J. Opt. 5, 467–487 (1995)
29. Poljak, S., Rendl, F.: Solving the max-cut using eigenvalues. Dis-
cret.Appl.Math.62(1–3), 249–278 (1995)
30. Poljak,S.,Tuza,Z.:Maximumcutsandlargebipartitesub-
graphs.DIMACSSer.Discret.Math.Theor.Comput.Sci.20,
181–244 (1995)
31. Sahni, S., Gonzalez, T.: P-complete approximation problems.
J. ACM 23(3), 555–565 (1976)
32. Swamy, C.: Correlation clustering: maximizing agreements via
semidefinite programming. In: Proceedings of 15th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), New
Orleans 2004, pp. 526–527
33. Trevisan,L.,Sorkin,G.,Sudan,M.,Williamson,D.:Gadgets,ap-
proximation, and linear programming. SIAM J. Comput. 29(6),
2074–2097 (2000)
Maximum Agreement Subtree
(of 2 Binary Trees)
1996; Cole, Hariharan
RAMESH HARIHARAN
Strand Life Sciences, Bangalore, India
Keywords and Synonyms
Isomorphism; Tree agreement
Problem Definition
Consider two rooted trees T
1
and T
2
with n leaves each.
The internal nodes of each tree have at least two children
each. The leaves in each tree are labeled with the same
set of labels and further, no label occurs more than once