
Computing Pure Equilibria in the Game of Parallel Links C 183
give details of actual compression performance, as do the
majority of published papers.
URL to Code
The page at http://www.csse.unimelb.edu.au/~alistair/
codes/ provides a simple text-based “compression” system
that allows exploration of the various codes described here.
Cross References
Arithmetic Coding for Data Compression
Compressed Text Indexing
Rank and Select Operations on Binary Strings
Recommended Reading
1. Anh, V.N., Moffat, A.: Improved word-aligned binary compres-
sion for text indexing. IEEE Trans. Knowl. Data Eng. 18(6), 857–
861 (2006)
2. Boldi, P., Vigna, S.: Codes for the world-wide web. Internet
Math. 2(4), 405–427 (2005)
3. Brisaboa, N.R., Fariña, A., Navarro, G., Esteller, M.F.: (S; C)-dense
coding: An optimized compression code for natural language
text databases. In: Nascimento, M.A. (ed.) Proc. Symp. String
Processing and Information Retrieval. LNCS, vol. 2857, pp. 122–
136, Manaus, Brazil, October 2003
4. Chen, D., Chiang, Y.J., Memon, N., Wu, X.: Optimal alphabet
partitioning for semi-adaptive coding of sources of unknown
sparse distributions. In: Storer, J.A., Cohn, M. (eds.) Proc. 2003
IEEE Data Compression Conference, pp. 372–381, IEEE Com-
puter Society Press, Los Alamitos, California, March 2003
5. Cheng, C.S., Shann, J.J.J., Chung, C.P.: Unique-order interpola-
tive coding for fast querying and space-efficient indexing in
information retrieval systems. Inf. Process. Manag. 42(2), 407–
428 (2006)
6. Culpepper, J.S., Moffat, A.: Enhanced byte codes with restricted
prefix properties. In: Consens, M.P., Navarro, G. (eds.) Proc.
Symp. String Processing and Information Retrieval. LNCS Vol-
ume 3772, pp. 1–12, Buenos Aires, November 2005
7. de Moura, E.S., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast and
flexible word searching on compressed text. ACM Trans. Inf.
Syst. 18(2), 113–139 (2000)
8. Fenwick,P.:Universalcodes.In:Sayood,K.(ed.)LosslessCom-
pression Handbook, pp. 55–78, Academic Press, Boston (2003)
9. Fraenkel, A.S., Klein, S.T.: Novel compression of sparse bit-
strings –Preliminary report. In: Apostolico, A., Galil, Z. (eds)
Combinatorial Algorithms on Words, NATOASI Series F, vol. 12,
pp. 169–183. Springer, Berlin (1985)
10. Gupta, A., Hon, W.K., Shah, R., Vitter, J.S.: Compressed data
structures: Dictionaries and data-aware measures. In: Storer,
J.A., Cohn, M. (eds) Proc. 16th IEEE Data Compression Con-
ference, pp. 213–222, IEEE, Snowbird, Utah, March 2006 Com-
puter Society, Los Alamitos, CA
11. Moffat, A., Anh, V.N.: Binary codes for locally homogeneous
sequences. Inf. Process. Lett. 99(5), 75–80 (2006) Source code
available from www.cs.mu.oz.au/~alistair/rbuc/
12. Moffat, A., Stuiver, L.: Binary interpolative coding for effective
index compression. Inf. Retr. 3(1), 25–47 (2000)
13. Moffat, A., Turpin, A.: Compression and Coding Algorithms.
Kluwer Academic Publishers, Boston (2002)
14. Raman, R., Raman, V., Srinivasa Rao, S.: Succinct indexable dic-
tionaries with applications to encoding k-ary trees and mul-
tisets. In: Proc. 13th ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 233–242, San Francisco, CA, January 2002, SIAM,
Philadelphia, PA
15. Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes: Com-
pressing and Indexing Documents and Images, 2nd edn. Mor-
gan Kaufmann, San Francisco, (1999)
Compression
Compressed Suffix Array
Compressed Text Indexing
Rank and Select Operations on Binary Strings
Similarity between Compressed Strings
Table Compression
Computational Learning
Learning Automata
Computing Pure Equilibria
in the Game of Parallel Links
2002; Fotakis, Kontogiannis, Koutsoupias,
Mavronicolas, Spirakis
2003; Even-Dar, Kesselman, Mansour
2003; Feldman, Gairing, Lücking, Monien, Rode
SPYROS KONTOGIANNIS
Department of Computer Science, University
of Ioannina, Ioannina, Greece
Keywords and Synonyms
Load balancing game; Incentive compatible algorithms;
Nashification; Convergence of Nash dynamics
Problem Definition
This problem concerns the construction of pure Nash
equilibria (PNE) in a special class of atomic congestion
games, known as the Parallel Links Game (PLG). The pur-
pose of this note is to gather recent advances in the exis-
tence and tractability of PNE in PLG.
T
HE PURE PARALLEL LINKS GAME.LetN [n]
1
be
a set of (selfish) players, each of them willing to have her
1
8k 2 N; [k] f1; 2;:::;kg.