• Prob({x}) ≥ 0 x
• Prob(S) = 1
• Prob(X ∪ Y ) = Prob(X) + Prob(Y ) X, Y ⊆ S
X ∩ Y = ∅
Prob(X) X (S, Prob)
x, y ∈ S
Prob({x}) = Prob({y}),
Prob S
(S, Prob)
• Prob(∅) = 0
• Prob(S − X) = 1 − P rob(X) X ⊆ S
• Prob(X) ≤ Prob(Y ) X, Y ⊆ S X ⊆ Y
• Prob(X ∪ Y ) = Pr ob(X) + Prob(Y ) − Prob(X ∩ Y )
≤ Prob(X) + Prob(Y )
X, Y ⊆ S
• Prob(X) =
P
x∈X
Prob(x)
X ⊆ S
Prob(i) =
1
6
i ∈ { 1, 2, . . . , 6}
S
2
= {(i, j) | i, j ∈ {1, 2, . . . , 6}}
(i, j) i
j
Prob
2
S
2
({1, 2, . . . , 6}, Prob)
i, j ∈ {1, 2, . . . , 6}
Prob
2
({(i, j)}) = Prob({i}) · Prob({j}) =
1
6
·
1
6
=
1
36
.
S
2
36
(i, j) ∈ S
2