B
i,t
1
t i
|Γ | = m B
i,t
O(1)
B =
^
0≤i,t≤p(|w|)
B
i,t
B O ((p(|w|))
2
)
t
C
t
= U(Sh0, ti, Sh1, ti, . . . , Shs, ti).
Sh0, ti, . . . , Shs, ti
C
t
M t
|Q| = s + 1
C
t
O(1)
C
C =
^
0≤t≤p(|w|)
C
t
.
C M
C O(p(|w|))
D
i,j,t
= (Chi, j, ti ↔ Chi, j, t + 1i) ∨ Hhi, ti
1 ≤ j ≤ m 0 ≤ t ≤ p(|w|)−1 (t+1)
Hhi, ti = 0 i
D
i,j,t
O(1)
D
D =
^
0≤i≤p(|w|)
1≤j≤m
0≤t≤p(|w|)−1
D
i,j,t
.
D O ((p(|w|))
2
)
i t j ∈ {1, . . . , m} k ∈ {0, 1, . . . , s}
E
i,j,k,t
Chi, j, ti ∨ Hhi, ti ∨ Shk, ti∨
W
l
(Chi, j
l
, t + 1i ∧ Shk
l
, t + 1i ∧ Hhi
l
, t + 1i)
28
x ↔ y (x ∨ y) ∧(x ∨ y)
D
i,j,t
↔ (Chi, j, ti ∨ Chi, j, t + 1i ∨ Hhi, t i) ∧ (Chi, j, ti ∨ Chi, j, t + 1i∨ Hhi, ti ) .
29
m