Index
1183
partitioned regression, 32–35
Poisson regression model,
803–804
pooled regression model. See
pooled regression model
quantile regression model,
207–210
structural change, 168–175
SUR model. See seemingly
unrelated regression (SUR)
model
truncated regression model,
837–839
regression variance, 1037
regression with constant term, 35
regressor, 12
regular densities, 515–516
regularity conditions, 514–515
rejection region, 111, 1062
Renault, E., 712n24, 858n12
RENB model, 819
Renfro, C., 930n16, 932n19, 938n28,
1089n1
reservation wage, 2
RESET test, 137–138
residual, 26
residual correlation, 353
residual inclusion method, 828
residual maker, 31
residual variance, 1037
residual variance (regression), 1036
response, 155
restricted investment equation, 120
restricted least squares estimator,
121–122
restrictions, 326
returns to schooling, 397
Revankar, N., 205, 216, 294n8,
309n23
revealed preference data, 782
Revelt, D., 771, 782
reverse equation, 334
reverse regression, 176, 177
Rice, N., 222, 697, 698, 735, 736,
794, 795, 798, 884, 887
Rich, R., 3, 951, 953
Richard, J., 135, 317, 968, 969
Ridder, G., 496n13, 885
right censoring, 813
Rilstone, P., 92
Riphahn, R., 3, 195, 345, 411, 540,
569, 571, 705, 735, 794,
807n14, 809, 820, 826, 827
risk set, 870
Rivers, D., 858n12
Robb, L., 313n31, 609, 610, 749, 793
Roberts, H., 176
Robertson, D., 422
Robins, J., 887
Robins, R., 930, 932
Robinson, C., 685n3
Robinson, P., 860n14
robust covariance matrix
estimation, 350–352, 692–693
robust estimation, 269, 276
robust estimator (wage equation),
355, 356
robust standard errors, 389
robustness to unknown
heteroscedasticity, 279
Rodgers, J., 1094n13
Rodriguez-Poo, J., 685n3, 693
Rogers, W., 71, 204
root mean squared error, 88
Rose, A., 410
Rose, J., 761, 772n6, 782
Rosen, H., 502n18, 505
Rosen, S., 685n3, 892n34
Rosenbaum, P., 895
Rosenblatt, D., 446
Rosett, R., 848n10
Rossi, P., 656n2, 761
rotating panel, 344
Rothenberg, T., 956, 957
Rothschild, M., 930n16
Rothstein, J., 229
Rotnitzky, A., 887
row vector, 973
Rowe, B., 706n20, 746n41
Roy’s identity, 184
RPL model, 771–772
RPL procedure, 642
RPM procedure, 642
Rubin, D., 94, 96, 656n2, 678, 814,
895, 1104, 1106
Rubin, H., 328n42, 335, 567, 948
Rubin’s causal model, 889
Runkle, D., 628n7, 716n27, 773, 883
Rupert, P., 232, 351
Ruud, P., 433n1, 435, 468n3, 628,
693, 712n24, 858n12, 916
Sala-i-Martin, X., 142, 143,
410, 970
Salem, D., 1024n5
Salmon, M., 277
sample discrepancy, 114
sample information, 434
sample midrange, 1048
sample selection, 872–887
attrition, 886–887
bivariate distribution, 873
common effects, 884
labor supply, 874, 878–879
maximum likelihood estimation,
877–878
nonlinear models, 880–883
panel data applications, 883
regression, 873–876
treatment effects. See evaluation
of treatment effects
two-step estimation, 876–877
sample selection bias, 221, 735
sampling
continuous distributions, 607–608
discrete populations, 608–609
multivariate normal
population, 608
standard uniform population, 606
sampling distribution, 1051–1055
sampling distribution (least squares
estimator), 54–55
sampling theory estimator, 665
sampling variability, 1053
sampling variance, 58, 1055
sampling variance (two-variable
regression model), 59
sandwich estimator, 545, 693
Savin, E., 305n16, 533n10
Savin, N., 947n8
Saxonhouse, G., 420n30
scalar matrix, 973
scalar multiplication, 976
scaled log-likelihood function, 469
scatter diagram, 1049
scedastic function, 1035
Schimek, M., 213
Schipp, B., 305n16
Schmidt, P., 124n4, 153, 171, 292n3,
305n16, 329n43, 332n45,
359n5, 382n24, 402, 497, 499,
502, 503, 505, 761, 763, 833,
839, 840, 841, 843, 852,
858, 958
Schur product, 635
Schwarz criterion, 139, 140
Schwert, W., 933, 955
score test, 530
score vector, 517
Scott, E., 588, 619, 721,
722n29, 861
Seaks, T., 122, 152n1, 193n5
season of birth, 254
second derivatives matrix, 1008
second-generation random
coefficients model, 417n28
seed, 605